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Abstract: The soil health card programme has been undertaken by all Indian states
for sustainable crop production. High resolution nutrient maps prepared from the
measured point data will be of great help for fertilizer management. The present study
used the popular method of interpolation i.e., ordinary kriging (OK) in mapping
major soil nutrients of Bemetara district from national soil health card scheme data. A
total of 14491 geo-referenced soil health card data were used for the study. The soils
were neutral in reaction (pH ranging 6.5 to 7.9 with mean of 7.2) and non-saline. The
soils were mostly low to medium in organic carbon (mean 0.69 %) and available
phosphorous (mean 17.24 kg ha"), low in available nitrogen (mean 228 kg ha ') and
medium to high in available potassium (mean 390 kg ha"). Semivariogram modeling
was done with 70 per cent of samples and the output maps were validated with the rest
of 30 per cent samples. The semivariogram generated for the soil nutrients during
interpolation approach (OK) showed poor spatial dependency among the points
resulting in lower accuracies in nutrient mapping.
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Introduction

Balanced fertilizer use is the key to enhance use
efficiency of the plant nutrients for maintaining the soil
productivity. It aims at application of fertilizers in
optimum quantities and in right proportion through
appropriate methods, which results in sustenance of soil
fertility and crop productivity. Due to insufficient and
unbalanced use of plant nutrients by fertilizers and
manures, the soil fertility status of both agriculturally
advanced irrigated regions and less endowed rainfed
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regions in India has been depleted. There will be a greater
drain on native soil fertility unless nutrients are supplied
judiciously, and the soil will be unable to maintain high
crop production in the years to come unless nutrients are
supplied judiciously. Fertilizer use in India is highly
skewed towards nitrogen. In 2012—13, the ratio of NPK
use in India reached 8.2:3.2:1, which is more imbalanced
compared to the early 1970s when the ratio was 6:1.9:1.
Site-specific nutrient management allows
farmers to add the exact amount of nutrients needed in
each field. The soil health card programme of
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Government of India has been embraced by all Indian
states to provide soil health card to each farmer for
sustainable crop production and as a first step toward
precision farming. Thousands of data points on soil
nutrients may now be used to create spatial maps of soil
nutrients. Various researchers have utilized these data for
soil nutrient mapping (Kusro et al. 2021; Singh et al.
2021). A map of the soil fertility in a particular location
can be very helpful in determining how much fertilizer to
use in that area (Kumar and Sinha 2018; Reza et al.
2021).

Several interpolation methods have been used to
prepare soil nutrient maps from the point locations
(Kumar 2013; Kumar 2018). Ordinary kriging has been
found as one of the most extensively utilized
interpolation methods for soil nutrient assessment. The
procedure entails creating an empirical semivariogram,
determining the best model fit for the semivariogram
(e.g., circular, spherical, Gaussian, exponential, and so
on), and then kriging (Moharana et al. 2021; Sahu et al.
2020; Reza et al. 2021). Both grid based (Ayam et al.
2020) or random samples (Banwasi et al. 2020) have
been used to prepare soil fertility maps. High density soil
health card data have also been used to prepare soil
fertility maps in various districts of Chhattisgarh
including Kanker (Kusro et al. 2021), and Balod (Singh
etal.2021). This paper aims to prepare soil fertility maps
of Bemetara district based on the high density soil health
card data using ordinary kriging for site-specific nutrient
management.
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Materials and Methods
Study area

Bemetara district is 2854.81 km’in size and is
delimited by latitude 21°22' to 22°03' N and longitude
81°07' to 81°55 E (Fig. 1). The district is part of the
Mahanadi Basin and has sedimentary deposit of the
“Purana” basins (well-defined boundaries and not an
erosional remnant or a tectonic depression) of Peninsular
India (Karthikeyan et al. 2021). The district receives an
average yearly rainfall of 1423.5 mm. A large acreage of
cultivated land in the district is mainly under kharif crops
such as rice (Oriza sativa), and soybean (Glycine max).
The dominant rabi crop of the area is wheat (7riticum
aestivum) grown with the support of irrigation and other
crops like gram (Cicer arietinum) is cultivated on stored
moisture. Few farmers grow lathyrus (Lathyrus sativus)
and lentil (Lens esculenta) crops after the rice completely
on stored moisture in the rabi season. Rice-wheat, rice—
gram, soybean-gram and soybean—pigeon pea (intercrop)
are most adopted cropping systems in the area.

Generation of spatial database of soil nutrient

Spreadsheet-formatted data from the soil health
card was gathered and pre—processed to avoid
duplications and positional errors. The spread sheet data
were converted to spatial form by employing QGIS tools.
A total of 14491 samples (Fig. 1) were divided in two
parts, i.e. 70 % for training and 30 % for test.
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Fig. 1. Study area and sampling locations
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Statistical and geo-statistical analysis

R (R core team 2020) —an open source software
for statistics, predictive analytics, data visualization, and
spatial analysis was used to process and analyze the soil
nutrient data. This involves recognizing outliers,
generation of training and validation sets, generation of
descriptive statistics, and correlation analysis among the
variables. Various packages in R were used as described
by Kumar et al. (2021). The package 'metan’ (Olivoto
and Lucio 2020) was used for detection and removal of
the outliers. The outliers were defined as values above
third quartile plus inter-quartile range (IQR) or below
first quartile minus IQR. The training and validation sets
were divided in such a way that the descriptive statistics
and the distribution of both the sets remain similar. The
descriptive statistics including minimum, mean, median,
maximum, standard deviation (SD), skewness, kurtosis
and coefficient of variation (CV) were generated using
the same package. Correlation matrix showing the
correlations among the soil properties was generated
using the package 'corrplot’(Weiand Simko 2021).

Nutrient mapping

The ordinary kriging approach was used for
mapping the soil properties (soil reaction, electrical
conductivity, organic carbon, available nitrogen,
phosphorous, and potassium). This includes generation
of empirical semivariogram, model fitting, and
interpolation. Semivariograms are used to represent
spatial variability, implying homogeneity among
equivalent lags to illustrate the mean deviation between
observations differentiated by h. The values of the
semivariogram at each lag separation (h) were
measured:

v () =1/2(@) " [2(xi) — z(xi +D)T?
Where,
v (h) = sample semivariance
N(h)

< Numeric data combinations at a particular distance
and direction class
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Z(x,) =Value of variable at x, point

Z(x,th)=Value of variable at a distance of h from
the point x,

Each soil attribute was fitted with one of four
commonly used semivariogram models like circular,
spherical, Gaussian, and exponential. The model with the
lowest sum of squared error (SSE) was selected as the best
fit model and its parameters (nugget, sill and range) were
calculated (Webster and Oliver 2001). Nugget C,—defines
the micro-scale variability measurement error for the
respective soil variable, sill (C) indicates the lag distance
between measurements at which one value for a variable
does not influence neighboring values and range (A) is
the distance at which values of one variable become
spatially independent of another (Lopez-Granados ef al.
2002). ArcGIS Desktop ver. 10.2 was used for the
geostatistical analyses.

Validation of kriged maps

The kriged maps were validated with the
validation set to assess the authenticity of soil properties
maps. The performance of each map was evaluated using
R* (Pearson 1895), Lin's concordance correlation
coefficient (LCCC) (Lin 1989), root mean square error
(RMSE) (Kenney and Keeping 1962) and bias (Varma
and Simon 2006).

Results and Discussion
Descriptive statistics

The descriptive statistics are shown in the table 1.
electrical conductivity (EC), organic carbon (OC),
available nitrogen (N), phosphorous (P), and potassium
(K) were 0.37 dSm ", 0.69 %, 228.5kgha', 17.24 kg ha'
and 390 kg ha', respectively. The skewness and kurtosis
values were well within the range of - to +1, indicating
normal distribution of the data and no substantial
skewness and peakness in the data. Coefficient of
variation (CV) is one of the most important parameter that
describes the variability of soil variables than other
parameter such as standard deviation (SD), mean and
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median (Xing—Yi et al. 2007 and Zhou et al. 2010).
Hence, the variability of soil variables was interpreted as
per Wilding (1985) using the CV classes as highly

Table 1. Statistical summary of soil parameters
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variable (CV > 35%), moderately variable (CV 15 to
35%) and low variable (CV < 15%). Accordingly, high
variability was found for EC while the other parameters
were moderately variable.

Standard Coefficient of
Variable Min Max Mean Median Kurtosis | Skewness

Deviation variation
EC 0.02 0.84 0.37 0.33 0.15 0.50 1.09 42.459
oC 0.11 1.29 0.69 0.7 0.21 -0.12 -0.02 31.614
N 100.35 365.6 228.50 225.79 49.36 -0.45 0.00 21.605
P 0.89 33.92 17.24 17.02 5.78 -0.24 0.24 33.562
K 88.4 692.99 390.09 378.5 110.14 -0.32 0.41 28.235

Correlation among soil nutrients

The relationships among the soil parameters in
the form of a correlation plot is shown in figure 2. The
negative and positive significant correlations are
coloured red and blue, respectively. The strength of the

connections is indicated by the size and intensity of the
colour. The correlations were moderate. The corrplot
showed insignificant correlations between pH and EC
and between N and P at significance level of 95%.
Theother correlations were significant. The weak
correlation was shown in fade colours and small circles.

Fig. 2. Correlation matrix for the soil nutrient parameters
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Training and test data

The total sample was divided into two parts
based on the variability of the soil properties. 10144
samples were identified as training and 4347 samples as
test. The distribution of the data for all parameters is

pi

|I.

Class Class Class
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shown in figure 3. The descriptive statistics of both the
data sets were found similar in all variables. The figure
showed that the mean, median, the quartiles and the inter—
quartile range (IQR) were same for the training and test
datasets for all the soil properties.

Class

‘ Test
E Traaning

Class Class

Class

Fig. 3. Distribution of training and test data

Modeling spatial variability

To determine the various spatial patterns of
distinct soil nutrients, semivariograms were created for
each parameter. (Fig. 4) The best fit models for all
variables using semivariogram parameters (range,
nugget, and partial sill) is shown in table 2. From the
plotted graphs of semivariogram and after computing
nugget/sill ratio, there is weak spatial dependency
incase of EC, pH, and K. Moderate dependency found in

case of OC and N, whereas, strong spatial dependency
was found in case of P. Nugget/sill of higher ratio
indicated that the spatial variability was primarily caused
by stochastic factors e.g. fertilization, farming measures,
cropping systems and other human activities. A lower
nugget /sill ratio showed that the structural factors e.g.
factors of soil genesis play significant role in spatial
variability. Thus, the OK method of interpolation do not
provide better prediction for soil nutrients at unknown
points as observed in figure 5.
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Fig. 4. Semivariogram model for the soil parameters

Table 2. Best fit model for the empirical semivariograms and their statistics

Parameters Model Nugget | Partial | Sill Lag | Range| Nugget/| Spatial Dependency
sill sill

pH Gaussian | 0.002 | 0.0003 | 0.0023 | 633.8 | 7605 0.86 Weak

EC Exponential | 0.063 | 0.006 | 0.0690 | 1554 | 18652 | 0.91 Weak
Organic Circular 0.028 | 0.0342 | 0.0622 | 0.77 | 6.85 0.44 Moderate
carbon

Avail Nitrogen| Exponential | 2647 | 1534.7 | 4181.7 | 1181 | 3084 0.63 Moderate
Phosphorous | Exponential | 59.5 | 481.55 | 541.05| 150 | 1805 0.10 Strong
Potassium Exponential | 10970 | 4035 | 15005 | 677 | 6862 0.73 Weak
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Fig. 5. Ordinary kriging maps for the soil nutrient variables (pH, EC, OC, N, P, and K)
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The soil reaction ranged from 6.5 to 7.8 with
lower pH in the forest and hilly areas. Similarly, the soil
EC ranged from 0.13 to 1.49 dS m" with lower values in
the forest areas and higher in case of the plains with
agriculture. The relationships between soil pH and
terrain indicators such as slope are well established
(Moore et al. 1993; Chen et al. 1997; Li et al. 2017;
Ayam et al. 2020). The lower pH values in forests can be
attributed to accumulation and subsequent slow
decomposition of organic matter, which releases acids.
Organic carbon found in the range of 0.23-.26 % while
higher carbon percentage is found in the forest region.
Nitrogen ranged from low (100 kg ha") to high (585 kg

Adyasha Priyadarshini et al.

ha') with lower values in the hilly areas. Phosphorous
and Potassium ranged from 2.66 to 46 kg ha'and 197.45
to 761.6kgha respectively.

Validation and accuracy assessment

Spatial distribution maps of soil properties were
validated using the validation set of 4347 sample points.
Evaluation indices of the predicted pH, EC, OC, N, P, and
K through OK approach are shown in table 3. The
observed versus average predicted values are shown in
fig. 6.

Table 3. Validation indices in accuracy of spatial analysis

Parameter RMSE R’ P Value LCCC Bias
pH 0.231 0.145 0.000 0.28 -0.0005
EC 0.147 0.163 0.000 0.30 0.0070
oC 0.201 0.158 0.000 0.29 0.0003
N 47.980 0.050 0.000 0.14 0.1154
P 5.479 0.096 0.000 0.20 -0.0402
K 98.15 0.208 0.000 0.37 1.6991

Evaluation indices for the predicted maps
showed the RMSE values of N and P were high as
compared to other parameters (Table 3). The R’ values
for all soil variables were poor but significant. The

80-  CCC: 0.28 (95% Cl 0.26 - 0.3)
y=c(1.006)+c(0.8614) -x, r* =0.145-

Predicted

8.0

in "

6.5 7.0

Obser\.fed”

LCCC values ranged from 0.14 to 0.37 for different soil
properties in the area showing a poor correlation.
Overall, the bias of the prediction was positive for EC,
OC, N, and K, and negative for pH and P.

o8- CCC: 0.3 (95% CI 0.28 - 0.32) =
¥ =<(0.04631)+c(0.8942) -x, r* = 0163’

Predicted

0.00 0.25 0.50
Observed
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1.25 CCC:0.29 (95% C1 0.27 - 0.31)
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Fig. 6. Validation statistics between observed and predicted soil parameters
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Conclusion

Soil health card data can be used for generating
high resolution maps utilizing spatial interpolation
techniques that can convert geographically discrete data
to continuous surface maps and ultimately reduce the
number of sampling sites as a result cumbersome
sampling procedure can be averted. Ordinary kriging is
most widely used form of kriging but the maps
generated though it is less accurate. Inclusion of the
factors of climate, land use, and terrain which influence
soil formation and properties of soil effectively for
prediction of soil properties through machine learning
techniques such as random forest, support vector
machine, efc. may result in better modeling accuracies.
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