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 Use of Soil Health Card Data for Nutrient Mapping: 

A Case Study of Bemetara District, Chhattisgarh
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Abstract:  The soil health card programme has been undertaken by all Indian states 
for sustainable crop production. High resolution nutrient maps prepared from the 
measured point data will be of great help for fertilizer management. The present study 
used the popular method of interpolation i.e., ordinary kriging (OK) in mapping 
major soil nutrients of Bemetara district from national soil health card scheme data. A 
total of 14491 geo-referenced soil health card data were used for the study. The soils 
were neutral in reaction (pH ranging 6.5 to 7.9 with mean of 7.2) and non-saline. The 
soils were mostly low to medium in organic carbon (mean 0.69 %) and available 

-1 -1phosphorous (mean 17.24 kg ha ), low in available nitrogen (mean 228 kg ha ) and 
-1medium to high in available potassium (mean 390 kg ha ). Semivariogram modeling 

was done with 70 per cent of samples and the output maps were validated with the rest 
of 30 per cent samples. The semivariogram generated for the soil nutrients during 
interpolation approach (OK) showed poor spatial dependency among the points 

resulting in lower accuracies in nutrient mapping. 
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Introduction

Balanced fertilizer use is the key to enhance use 

efficiency of the plant nutrients for maintaining the soil 

productivity. It aims at application of fertilizers in 

optimum quantities and in right proportion through 

appropriate methods, which results in sustenance of soil 

fertility and crop productivity. Due to insufficient and 

unbalanced use of plant nutrients by fertilizers and 

manures, the soil fertility status of both agriculturally 

advanced irrigated regions and less endowed rainfed 

regions in India has been depleted. There will be a greater 

drain on native soil fertility unless nutrients are supplied 

judiciously, and the soil will be unable to maintain high 

crop production in the years to come unless nutrients are 

supplied judiciously. Fertilizer use in India is highly 

skewed towards nitrogen. In 2012–13, the ratio of NPK 

use in India reached 8.2:3.2:1, which is more imbalanced 

compared to the early 1970s when the ratio was 6:1.9:1.
Site-specific nutrient management allows 

farmers to add the exact amount of nutrients needed in 

each field. The soil health card programme of 



Government of India has been embraced by all Indian 

states to provide soil health card to each farmer for 

sustainable crop production and as a first step toward 

precision farming. Thousands of data points on soil 

nutrients may now be used to create spatial maps of soil 

nutrients. Various researchers have utilized these data for 

soil nutrient mapping (Kusro et al. 2021; Singh et al. 

2021). A map of the soil fertility in a particular location 

can be very helpful in determining how much fertilizer to 

use in that area (Kumar and Sinha 2018; Reza et al. 

2021). 
Several interpolation methods have been used to 

prepare soil nutrient maps from the point locations 

(Kumar 2013; Kumar 2018). Ordinary kriging has been 

found as one of the most extensively utilized 

interpolation methods for soil nutrient assessment. The 

procedure entails creating an empirical semivariogram, 

determining the best model fit for the semivariogram 

(e.g., circular, spherical, Gaussian, exponential, and so 

on), and then kriging (Moharana et al. 2021; Sahu et al. 

2020; Reza et al. 2021). Both grid based (Ayam et al. 

2020) or random samples (Banwasi et al. 2020) have 

been used to prepare soil fertility maps. High density soil 

health card data have also been used to prepare soil 

fertility maps in various districts of Chhattisgarh 

including Kanker (Kusro et al. 2021), and Balod (Singh 

et al. 2021). This paper aims to prepare soil fertility maps 

of Bemetara district based on the high density soil health 

card data using ordinary kriging for site-specific nutrient 

management. 

 

Materials and Methods

Study area

2
Bemetara district is 2854.81 km in size and is 

delimited by latitude 21°22' to 22°03' N and longitude 

81°07' to 81°55 E (Fig. 1). The district is part of the 

Mahanadi Basin and has sedimentary deposit of the 

“Purana” basins (well-defined boundaries and not an 

erosional remnant or a tectonic depression) of Peninsular 

India (Karthikeyan et al. 2021). The district receives an 

average yearly rainfall of 1423.5 mm. A large acreage of 

cultivated land in the district is mainly under kharif crops 

such as rice (Oriza sativa), and soybean (Glycine max). 

The dominant rabi crop of the area is wheat (Triticum 

aestivum) grown with the support of irrigation and other 

crops like gram (Cicer arietinum) is cultivated on stored 

moisture. Few farmers grow lathyrus (Lathyrus sativus) 

and lentil (Lens esculenta) crops after the rice completely 

on stored moisture in the rabi season. Rice-wheat, rice-

gram, soybean-gram and soybean-pigeon pea (intercrop) 

are most adopted cropping systems in the area. 

Generation of spatial database of soil nutrient

Spreadsheet-formatted data from the soil health 

card was gathered and pre-processed to avoid 

duplications and positional errors. The spread sheet data 

were converted to spatial form by employing QGIS tools. 

A total of 14491 samples (Fig. 1) were divided in two 

parts, i.e. 70 % for training and 30 % for test. 
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Fig. 1. Study area and sampling locations
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Statistical and geo-statistical analysis

R (R core team 2020) - an open source software 

for statistics, predictive analytics, data visualization, and 

spatial analysis  was used to process and analyze the soil 

nutrient data. This involves recognizing outliers, 

generation of training and validation sets, generation of 

descriptive statistics, and correlation analysis among the 

variables. Various packages in R were used as described 

by Kumar et al. (2021). The package 'metan' (Olivoto 

and Lúcio 2020) was used for detection and removal of 

the outliers. The outliers were defined as values above 

third quartile plus inter-quartile range (IQR) or below 

first quartile minus IQR. The training and validation sets 

were divided in such a way that the descriptive statistics 

and the distribution of both the sets remain similar. The 

descriptive statistics including minimum, mean, median, 

maximum, standard deviation (SD), skewness, kurtosis 

and coefficient of variation (CV) were generated using 

the same package.  Correlation matrix showing the 

correlations among the soil properties was generated 

using the package 'corrplot' (Wei and Simko 2021).

Nutrient mapping

The ordinary kriging approach was used for 

mapping the soil properties (soil reaction, electrical 

conductivity, organic carbon, available nitrogen, 

phosphorous, and potassium). This includes generation 

of empirical semivariogram, model fitting, and 

interpolation. Semivariograms are used to represent 

spatial variability, implying homogeneity among 

equivalent lags to illustrate the mean deviation between 

observations differentiated by h. The values of the 

semivariogram at each lag separation (h) were 

measured:
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Z(x  ) =Value of variable at x  pointi i

Z(x +h)=Value of variable at a distance of h from i

the point xi

Each soil attribute was fitted with one of four 

commonly used semivariogram models like circular, 

spherical, Gaussian, and exponential. The model with the 

lowest sum of squared error (SSE) was selected as the best 

fit model and its parameters (nugget, sill and range) were 

calculated (Webster and Oliver 2001). Nugget C - defines 0

the micro-scale variability measurement error for the 

respective soil variable, sill (C) indicates the lag distance 

between measurements at which one value for a variable 

does not influence neighboring values and range (A) is 

the distance at which values of one variable become 

spatially independent of another (Lopez-Granados et al. 

2002). ArcGIS Desktop ver. 10.2 was used for the 

geostatistical analyses. 

Validation of kriged maps

The kriged maps were validated with the 

validation set to assess the authenticity of soil properties 

maps. The performance of each map was evaluated using 
2R  (Pearson 1895), Lin's concordance correlation 

coefficient (LCCC) (Lin 1989), root mean square error 

(RMSE) (Kenney and Keeping 1962) and bias (Varma 

and Simon 2006). 

Results and Discussion

Descriptive statistics

The descriptive statistics are shown in the table 1. 

electrical conductivity (EC), organic carbon (OC), 

available nitrogen (N),  phosphorous (P), and potassium 
-1 -1 -1

(K) were 0.37 dSm , 0.69 %, 228.5 kg ha , 17.24 kg ha  
-1and 390 kg ha , respectively. The skewness and kurtosis 

values were well within the range of -1 to +1, indicating 

normal distribution of the data and no substantial 

skewness and peakness in the data. Coefficient of 

variation (CV) is one of the most important parameter that 

describes the variability of soil variables than other 

parameter such as standard deviation (SD), mean and 
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median (Xing-Yi et al. 2007 and Zhou et al. 2010). 

Hence, the variability of soil variables was interpreted as 

per Wilding (1985) using the CV classes as highly 

variable (CV > 35%), moderately variable (CV 15 to 

35%) and low variable (CV < 15%). Accordingly, high 

variability was found for EC while the other parameters 

were moderately variable.

Table 1. Statistical summary of soil parameters

Variable  Min Max Mean Median 
Standard 

Deviation 
Kurtosis Skewness 

Coefficient of 

variation 

EC 0.02 0.84 0.37 0.33 0.15 0.50 1.09 42.459 

OC 0.11 1.29 0.69 0.7 0.21 -0.12 -0.02 31.614 

N 100.35 365.6 228.50 225.79 49.36 -0.45 0.00 21.605 

P 0.89 33.92 17.24 17.02 5.78 -0.24 0.24 33.562 

K 88.4 692.99 390.09 378.5 110.14 -0.32 0.41 28.235 

 
Correlation among soil nutrients

The relationships among the soil parameters in 

the form of a correlation plot is shown in figure 2. The 

negative and positive significant correlations are 

coloured red and blue, respectively. The strength of the 

connections is indicated by the size and intensity of the 

colour. The correlations were moderate. The corrplot 

showed insignificant correlations between pH and EC 

and between N and P at significance level of 95%. 

Theother correlations were significant. The weak 

correlation was shown in fade colours and small circles.  

Fig. 2. Correlation matrix for the soil nutrient parameters
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Training and test data

The total sample was divided into two parts 

based on the variability of the soil properties. 10144 

samples were identified as training and 4347 samples as 

test. The distribution of the data for all parameters is 

shown in figure 3. The descriptive statistics of both the 

data sets were found similar in all variables. The figure 

showed that the mean, median, the quartiles and the inter-

quartile range (IQR) were same for the training and test 

datasets for all the soil properties.

Fig. 3. Distribution of training and test data

Modeling spatial variability 

To determine the various spatial patterns of 

distinct soil nutrients, semivariograms were created for 

each parameter. (Fig. 4) The best fit models for all 

variables using semivariogram parameters (range, 

nugget, and partial sill) is shown in table 2. From the 

plotted graphs of semivariogram and after computing 

nugget/sill ratio, there is weak spatial dependency 

incase of EC, pH, and K. Moderate dependency found in 

case of OC and N, whereas, strong spatial dependency 

was found in case of P. Nugget/sill of higher ratio 

indicated that the spatial variability was primarily caused 

by stochastic factors e.g. fertilization, farming measures, 

cropping systems and other human activities. A lower 

nugget /sill ratio showed that the structural factors e.g. 

factors of soil genesis play significant role in spatial 

variability. Thus, the OK method of interpolation do not 

provide better prediction for soil nutrients at unknown 

points as observed in figure 5. 
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Fig. 4. Semivariogram model for the soil parameters

Table 2. Best fit model for the empirical semivariograms and their statistics

 

Parameters Model Nugget Partial 

sill 

Sill Lag Range Nugget/ 

sill 

Spatial Dependency 

pH Gaussian 0.002 0.0003 0.0023 633.8 7605 0.86 Weak 

EC Exponential 0.063 0.006 0.0690 1554 18652 0.91 Weak 

Organic 

carbon 

Circular 0.028 0.0342 0.0622 0.77 6.85 0.44 Moderate 

Avail Nitrogen Exponential 2647 1534.7 4181.7 1181 3084 0.63 Moderate 

Phosphorous Exponential 59.5 481.55 541.05 150 1805 0.10 Strong 

Potassium Exponential 10970 4035 15005 677 6862 0.73 Weak 
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Fig. 5. Ordinary kriging maps for the soil nutrient variables (pH, EC, OC, N, P, and K)
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The soil reaction ranged from 6.5 to 7.8 with 

lower pH in the forest and hilly areas. Similarly, the soil 
-1 EC ranged from 0.13 to 1.49 dS m with lower values in 

the forest areas and higher in case of the plains with 

agriculture. The relationships between soil pH and 

terrain indicators such as slope are well established 

(Moore et al. 1993; Chen et al. 1997; Li et al. 2017; 

Ayam et al. 2020). The lower pH values in forests can be 

attributed to accumulation and subsequent slow 

decomposition of organic matter, which releases acids. 

Organic carbon found in the range of 0.23-1.26 % while 

higher carbon percentage is found in the forest region. 
-1Nitrogen ranged from low (100 kg ha ) to high (585 kg 

-1ha ) with lower values in the hilly areas. Phosphorous 
-1

and Potassium ranged from 2.66 to 46 kg ha and 197.45 
-1

to 761.6 kg ha  respectively. 

Validation and accuracy assessment

Spatial distribution maps of soil properties were 

validated using the validation set of 4347 sample points. 

Evaluation indices of the predicted pH, EC, OC, N, P, and 

K through OK approach are shown in table 3. The 

observed versus average predicted values are shown in 

fig. 6.

Table 3. Validation indices in accuracy of spatial analysis

Parameter RMSE R2 P Value  LCCC Bias 

pH 0.231 0.145 0.000 0.28 -0.0005 

EC 0.147 0.163 0.000 0.30 0.0070 

OC 0.201 0.158 0.000 0.29 0.0003 

N 47.980 0.050 0.000 0.14 0.1154 

P 5.479 0.096 0.000 0.20 -0.0402 

K 98.15 0.208 0.000 0.37 1.6991 

 

Evaluation indices for the predicted maps 

showed the RMSE values of N and P were high as 
2compared to other parameters (Table 3). The R  values 

for all soil variables were poor but significant. The 

LCCC values ranged from 0.14 to 0.37 for different soil 

properties in the area showing a poor correlation. 

Overall, the bias of the prediction was positive for EC, 

OC, N, and K, and negative for pH and P. 
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Fig. 6. Validation statistics between observed and predicted soil parameters

Conclusion

Soil health card data can be used for generating 

high resolution maps utilizing spatial interpolation 

techniques that can convert geographically discrete data 

to continuous surface maps and ultimately reduce the 

number of sampling sites as a result cumbersome 

sampling procedure can be averted. Ordinary kriging is 

most widely used form of kriging but the maps 

generated though it is less accurate. Inclusion of the 

factors of climate, land use, and terrain which influence 

soil formation and properties of soil effectively for 

prediction of soil properties through machine learning 

techniques such as random forest, support vector 

machine, etc. may result in better modeling accuracies.
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