

Sustaining Soil Health and Soybean Productivity with Partial Substitution of Nutrients through Gliricidia Green Manuring and Chemical Fertilizers in Vertisols of Central India

V. V. Gabhane^{1*}, M. M. Ganvir¹, R. S. Patode¹, A. B. Turkhede¹ and B. A. Sonune²

¹AICRP for Dryland Agriculture ICAR-CRIDA, Hyderabad-500059 ²Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola- 444104

Abstract: The present study was conducted to study the effect of partial substitution of nutrient through Gliricidia with chemical fertilizers on soil health and soybean productivity in Vertisols under AICRP for Dryland Agriculture, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola-444104 (M.S.) during 2009-13. experiment was laid out with nine treatments comprised of application of potassium through chemical fertilizers and gliricidia along with recommended dose of N and P (inorganic source) in a randomized block design with three replications. The pooled data indicated that application of 100% NP + 25 kg K ha⁻¹ + biofertilizers had highest soybean grain yield followed by application of 50% N through gliricidia +50% N through inorganics+ biofertilizers + 25 kg K ha⁻¹ which were on par with each other. The higher SYI and monetary returns were obtained with the application of substitution of 50 % N through gliricidia along with 50 % N through inorganics and biofertilizer which were statistically on par with application 100 % NP along with 25 kg K through chemical fertilizers. The results of the study also indicated significantly higher enhancement in soil organic carbon, residual soil fertility and nutrient uptake by soybean with the application of 50 % N through gliricidia along with 50 % N through inorganics and biofertilizer. Hence, it can concluded that for sustaining soil fertility and soybean productivity with higher economic returns, application of 50% N (25kg ha⁻¹) through gliricidia +50% N through inorganics + biofertilizers + 25kg P₂O₅+25kg K₂O ha⁻¹ is recommended as an integrated plant nutrient supply system on Vertisols under dryland condition in central India.

Kew words: Gliricidia green manuring, soil health, soybean productivity and Vertisols

Introduction

Soybean (*Glycine max* (L) Merill), a grain legume is considered as a wonder crop due to its dual quality *viz.* high protein (40-43 %) and oil content (20%). Soybean being a potentially high yielding crop can play a greater role in boosting oil seed production in the country. This legume is making straight way in Indian agriculture to meet protein and oil requirement. In addition to this, soybean protein has five per cent

lysine, which is deficit in most of the cereals and enriching the cereal flour with soybean improves the nutritive quality.

The green manures are a valuable potential source of N and organic matter. They play an important role in improving physical, chemical and biological properties of soil with increase in the microbial population in soil. Biofertilizers are preparations containing live or latent cell of efficient strains of nitrogen fixing, phosphate solubilizing or cellulolytic

^{*}Corresponding author: (Email: vvgabhane@gmail.com)

microorganisms used for application to seed, soil or composting areas with the objectives of increasing the population of such beneficial microorganisms and accelerate certain microbial processes to augment the extent of the availability of nutrients in a form which can be easily assimilated by the plants.

Constraint analyses have indicated that unbalanced nutrition is one of the important reasons for restricted growth in productivity of soybean (Sharma *et al.* 1996 and Tiwari 2001). Soybean like most legume perform nitrogen fixation by establishing a symbiotic relationship with bacteria *Rhizobium japonicum*. Use of organic manures with optimum rate of fertilizers under intensive farming system increases the turnover of nutrients in the soil plant system. The organic fertilizers along with biofertilizers help in reducing the dose of inorganic fertilizer, which in turn reduces the cost of cultivation and help in improving the soil health. Farmyard manure is an important component of integrated nutrient management for maintaining soil fertility and yield stability.

Now a days, the fertilizer requirements are increasing due to adoption of new high yielding varieties and hybrids in intensive cultivation. Therefore, to maintain crop productivity, the use of chemical fertilizers in balanced quantity is important. But looking into the continuous increasing prices of fertilizers, it becomes necessary to minimize the expenses on fertilizers by using alternative sources like farmyard manure, crop residues, green manuring along with chemical fertilizers for sustaining the crop yields and soil fertility. These practices not only increase the crop yield but also improve the physical, chemical and biological properties of soil. When integrated nutrient management through chemical fertilizers and different organic sources are applied on long term basis, they show beneficial impact on soil quality (Swarup 2010).

The effects and costs of organic and inorganic nutrient sources are different, but may be complementary. Thus, the combined use of organic and inorganic nutrient sources is now considered a better way to maintain soil fertility. Organic matter is the life of soil, and the practices that support organic matter build-up also favour sustainable productivity (Katyal *et*

al. 2001). Hence, the present study was carried out to assess the effect of conjunctive use of Gliricidia green leaf manure and chemical fertilizers on soil fertility, nutrient uptake by soybean, productivity and economics of soybean on Vertisols in Vidarbha region of Maharashtra.

Materials and Methods

A field experiments (gross plot size 5.4x9 m²; net plot size 4.5x8 m²) on Vertisols was initiated on the research field of AICRP for Dryland Agriculture, Dr. PDKV, Akola during 2009-13. This region has a typical semi-arid climate with most of the rainfall received between June and October. The soil at the site was a medium deep Vertisols (Typic Haplusterts). The soil was slightly alkaline in reaction (pH 8.1), low in organic C (5.2 g kg¹ soil), low in available N (195 kg ha¹), available P (15.5 kg ha¹) and high in available K (319 kg ha¹).

The experiment was laid out in a randomized block design with nine treatments comprising of Control (T1), 100 per cent NP (30:75:00 NPK kg ha⁻¹ (T2), (T3) 100 per cent NP + biofertilizers, (T4)100 per cent N through FYM + biofertilizers, (T5) 100 per cent NP + 25 $kg K ha^{-1}$, (T6) 100 per cent NP + 25 $kg K ha^{-1}$ + biofertilizes, (T7) 50 per cent N through green leaf manure + 50 per cent N through inorganics, (T8) 50 per cent N through green leaf manure + 50 per cent N through inorganics + biofertilizers, (T9) 50 per cent N through green leaf manure +50 per cent N through inorganics + biofertilizers + 25 kg potassium ha⁻¹. The seeds were inoculated with carrier based culture of Biofertilizers Rhizobium and PSB (25 g kg⁻¹ seed). Recommended P was applied to all the treatments except control (T1) and 100 per cent N through FYM + biofertilizers (T4). The recommended dose of soybean was 30:75:00 kg NPK ha⁻¹. FYM was applied before sowing in the first fortnight of June in both the years as per the treatments. Soybean (cv. JS-335) was sown at 0.45 m inter-row and 0.08 m intra-row spacing. Nitrogen, phosphorus and potassium were applied at the time sowing through urea, single super phosphate and muriate of potash, respectively at the time of sowing. The FYM had 0.51% N, 0.19% P and 0.48 % K. The gliricidia green leaves were applied after the germination of soybean crop. The green leaves had 0.68

% N, 0.10 % P and 0.48 % K. The total seasonal rainfall received during experimentation years was 537.6, 966, 455.7, 684.1 and 725.7 mm in 2009, 2010, 2011, 2012 and 2013, respectively.

Treatment-wise surface (0-20 cm) soil samples were collected at the harvest of soybean each year, air dried, processed and analysed for various soil properties. The soil organic carbon was determined by wet oxidation method (Nelson and Sommer 1982). The available N in soil was determined by modified alkaline potassium permanganate method as described by Subbiah and Asija (1956). Available phosphorus (Olsen P) was measured using sodium bicarbonate (NaHCO₃) as an extractant (Watanabe and Olsen 1965). Soil available K was extracted by shaking with neutral normal ammonium acetate for 5 minute (Hanway and Heidel 1952) and potassium in the extract was estimated by flame photometer.

The treatment-wise plant samples were selected randomly from each net plot at harvesting stage. The plant samples were dried in shade and then placed in oven at 65° C. These plant samples were analysed for total N, P and K as per procedure outlined by Piper (1966).

For calculating the sustainability yield index (SYI) (Sharma *et al.* 2005), the following equation was used.

$$SYI = \frac{\breve{y} - s}{Y_{max}}$$

Where, \ddot{y} = Average yield of the treatment.

s = Treatment standard deviation.

 $Y_{max} = Maximum$ yield in the experiment over the years.

The productivity rating index (PRI) was calculated as per the following formula

PRI = (Actual yield / Standard yield) X 100

Rain water use efficiency (RWUE) was calculated as under

RWUE = (Crop yield/Total seasonal rainfall)

The data was tested for their level of significance at P = 0.05 as per the procedure outlined by Panse and Sukhatme (1971).

Results and Discussion

The year-wise (2009-2013) data on soybean grain and straw yields as are presented in table 1.

Soybean grain yield

The grain yield of soybean was significantly influenced by different treatments in all the years and in pooled mean (Table 1). Data indicated that the highest soybean grain yield (1426.2, 2629 kg ha⁻¹) was obtained with the application of 100 % NP + 25 kg K along with the biofertilizers followed by 100 % NP + 25 kg K (1350.7 and 2540.7 kg ha⁻¹), 100 % NP + biofertilizer (1292.3, 2458.3 kg ha⁻¹) 100 % NP (1254.5, 2307.2 kg ha⁻¹) and 50 % N (GLM)+ 50 % N (inorganic)+ biofertilizers + 25 kg K (1272.4, 2238.5 kg ha⁻¹) in initial two years which were on par with each other. This clearly demonstrated that the nutrients applied through chemical fertilizers are readily available to the crop which resulted into significant increase in yield during initial years (2009, 2010).

From third year onwards (from 2011 to 2013), the significantly highest soybean grain yield was obtained with the application of 50% N from gliricidia green leaf manuring + 50 % N from chemical fertilizers along with biofertilizers and 25 kg K from inorganic source followed by 100 % NP + 25 kg K along with the biofertilizers. These treatments were on par with each other. This might due to the fact that nutrients from green leaf manuring did not meet the nutrient requirement of soybean during initial years of experiments.

The lowest grain yield was observed with 100 % NP through chemical fertilizers from the second year of study. From third year onwards, 100 % NP did not sustain the grain yield than the integrated use of N through green leaf manure and inorganic with biofertilizers and potassium application. The higher yield in subsequent year under the integrated treatments attributed to the improvement in soil physical conditions due to organic inputs (green leaf manuring and biofertilizers) which helps in steady supply of nutrients. This clearly indicated that the balanced nutrition through chemical fertilizers did not result in highest soybean

Table 1. Effect of INM on soybean grain and straw yield (kg ha⁻¹)

			Grain y	ield of So	Grain yield of Soybean (kg ha ⁻¹)	(g ha ⁻¹)			Straw y	rield of so	Straw yield of soybean (kg ha ⁻¹)	(g ha ⁻¹)			
	Treatments	2009	2010	2011	2012	2013	Pooled Mean	2009	2010	2011	2012	2013	Pooled Mean	PRI	SYI
Γ_1	T ₁ Control	1098.7 1895.2	1895.2	1368.3	1721.5	936.6	1404.7	2664.3	3121.3	2071.3	1982.2	1352.0	2238.2	56.19	0.38
T_2	100% NP (30:75:00 NPK kg ha ⁻¹)	1254.5 2307.2	2307.2	1450.6	2016.4	1063.1	1618.4	2432.9	3618.7	2561.7	2030.2	1707.2	2470.1	64.74	0.42
\mathbf{T}_3	100% NP + biofertilizers	1292.3	2458.3	1426.6	2057.6	1083.7	1663.7	2830.4	3632.5	2235.9	2091.9	1819.3	2522.0	66.55	0.41
T_4	100% N through FYM + biofertilizers	1152.9	2204.2	1419.7	1865.6	1028.8	1534.2	2508.4	3481.4	2352.5	2064.5	1574.3	2396.2	61.37	0.40
Γ_{5}	$100\% \text{ NP} + 25 \text{kg K ha}^{-1}$	1350.7	2540.7	1457.5	2119.3	1193.4	1732.3	2929.3	3680.5	2383.4	2078.2	1871.0	2588.5	69.29	0.44
T_6	100% NP + 25kg K ha ⁻¹ + biofertilizers	1426.2	2629.9	1642.7	2167.3	1220.8	1817.4	3068.0	3927.7	2472.5	2119.3	1894.4	2696.4	72.70	0.47
T_7	50% N through green leaf manure + 50% N through inorganics	1194.1	2224.8	1611.8	2115.9	1042.5	1637.8	2658.1	3577.5	2572.0	1995.9	1662.1	2493.1	65.51	0.42
T_8	50% N through green leaf manure + 50% N through inorganics + biofertilizers	1233.9	2217.9	1673.5	2085.0	1179.7	1678.0	2659.5	3495.1	2335.4	2033.6	1870.5	2478.8	67.12	0.46
T_9	50% N through green leaf manure +50% N through inorganics+ biofertilizers + 25kg K ha-1	1272.4	2238.5	1680.4	2352.5	1255.1	1759.8	2735.0	3426.5	2606.3	2263.4	2039.7	2614.2	70.39	0.47
	SE (m) <u>+</u> CD at 5%	60.6	108.2 324.5	73.2 219.4	90.6	61.6	39.5 118.5	100.3 300.7	134.8 404.2	135.0 NS	97.1 NS	114.9 344.6	57.4 172.0		

yield on long run than the conjunctive use of organic and inorganic fertilizers along with biofertilizers. Significant increase in seed cotton yield due to application of 100 kg N (Recommended dose of N) through mineral fertilizers during first year of experimentation was also recorded in cotton by Blaise (2011). Nitrogen through chemical fertilizer had a positive and significant effect on maize yield in the first three seasons (Kihara *et al.* 2011). Choudhary *et al.* (2018) also reported that balanced use of inorganic fertilizer initially produced higher grain yield of wheat compared to integrated nutrient management treatments (fertilizer + FYM/ green gram/ green manuring), but with the passage of time, integrated treatments showed higher yield over inorganic fertilizer treatment.

The of combined use of organic manure, inorganics and biofertilizers increased nutrients availability through enhanced microbial activity, conversion from unavailable forms and also due to improved physical, chemical and biochemical conditions (Tomar *et al.* 2018) of soil. Increase in crop yield with gliricidia loppings compared to crop residue was also reported by Sharma *et al.* (2005).

The pooled results indicated significantly higher grain yield with the application of 50% N through organic + 50% N through inorganic + 25 kg K from inorganic fertilizers along with biofertilizers which was statistically at par with 100% NP from fertilizers + 25 kg K along with biofertilizers and 100 % RDF + 25 kg K from chemical fertilizers. The increase in the pooled yield due to 50% N through green leaf manure + 50% N from inorganic + 25 kg K (inorganic) along with biofertilizers was 1.6, 8.7 and 14.7% higher over 100% NP + 25 kg K ha⁻¹ (Inorganic sources), 100% NP (30:75:00 NPK kg ha⁻¹) and 100% N through FYM + biofertilizers. Among all the treatments, the yield trend of soybean grain was as follows: 100% NP + 25 kg K through chemical fertilizers along with biofertilizers > 50% N through Gliricidia + 50% N + 25 kg K from chemical fertilizers along with biofertilizers > 100 % NP + 25 kg K through chemical fertilizers > 50% N through gliricidia + 50% N from chemical fertilizers along with biofertilizers > 100 % NP + biofertilizers > 50% N through green leaf manure + 50% N through inorganics > 100 % NP through chemical fertilizers > Control.

The application of 100% N from FYM did not sustain the soybean grain yield during all the years of experimentation indicating that nutrients from FYM are slowly mineralized thereby it did not meet nutrient requirement of soybean. Besides this, soybean required more phosphorus than N and FYM contains very less amount of P, this resulted in low yields of soybean when nutrients was applied only through FYM on N basis. Dass et al. (2013) noted that the effect of Gliricidia with INM, RDF, or bio-fertilizers was better than that of integration with FYM. This might be due to the higher concentration of nutrients in Gliricidia biomass and its fast decomposition (succulent nature) resulting in an early release of nutrients into the soil (Zaharah and Bah 1999). Mundus et al. (2008) reported that Gliricidia leaves decomposed twice as fast as cattle manure, and N release is more synchronized with plant demand; 86% of its N is released before 42nd day of its incorporation into soil (Lehmann et al. 1995).

This clearly suggests that instead of using chemical fertilizers alone for 100 % RDF, integration of organics (Gliricidia) and chemical fertilizers in a 50:50 proportion is agronomically more effective which also saves chemical fertilizers to the extent of 50% and also improves the effectiveness of the individual source when applied in association. Similar enhancement in rice yield with integrated application of nutrients in a 50:50 proportion was also reported by Babar and Dongale (2013). Data indicated that application of FYM and gliricidia lopping to substitute 50 % N along with compensation of RD from mineral fertilizers was found beneficial in sustaining the soybean grain yield.

Soybean straw yield

The pooled data (2009-2013) indicated the highest straw yield (2696.4 kg ha⁻¹) with the application of 100% NP + 25kg K ha⁻¹ + biofertilizers (T_6) and it was on par with application of 50% N through Gliricidia +50% N through inorganics+ biofertilizers + 25kg K ha⁻¹ (T_9) and 100% NP + 25kg K ha⁻¹ (T_9).

Productivity Rating Index (PRI)

The data (Table 1) revealed that the highest PRI (72.70) was recorded with the application of 100% NP+ 25kg K ha⁻¹ + biofertilizers (T₆) followed by 70.39 in treatment T₉ having application of 50% N through Gliricidia +50% N through inorganics+ biofertilizers + 25kg K ha⁻¹. The lowest PRI was recorded in control followed by application of 100 % N from FYM with biofertilizers.

Sustainable Yield Index (SYI)

Maintenance of soil fertility for higher productivity is the goal of sustainable agriculture. The Sustainable Yield Index (SYI) for each treatment was worked out using the respective mean yields of the treatment, standard deviation determined in each treatment and maximum yield observed in any treatment during the study.

The data on sustainable yield index of soybean indicated that the highest SYI (0.47) was with the application of 50% N through Gliricidia +50% N through inorganics+ biofertilizers + 25kg K ha⁻¹ (T_o) and $100\% \text{ NP} + 25 \text{kg K ha}^{-1} + \text{biofertilizers } (T_6) \text{ followed by}$ 0.46 in 50% N through glyricidia + 50% N through inorganics + biofertilizers (Table 1). The higher SYI in these treatments may be due to continuous supply of reserved nutrients by addition of green lopping along with chemical fertilizers. Therefore, combined application of nitrogen in a 50:50 proportion through Gliciridia loppings and chemical fertilizers increased the sustainability yield index (SYI) of soybean grain compared with control or alone application of 100 % N from FYM. In earlier studies, the application of FYM @ 10 t ha⁻¹ along with 50 % RDF from chemical fertilizers also increased the SYI of seed cotton on Vertisols of semi-arid tropics (Gabhane et al. 2014). Similar positive effects of substitution of N through FYM/ GLM/ GM on SYI under semi -arid conditions of central India also reported by (Sonune et al. 2012, Mali et al. 2015). Xie et al. (2016) reported increase in SYI with replacing N through green manure in paddy soil.

Although the SYI values showed comparable figures at 100% dose of only chemical fertilizers, this suggests necessity of regular addition of organics in order to sustain crop productivity of cotton-based cropping system in this tract without declining the soil quality further (Katyal *et al.* 1999; Manna *et al.* 2005 and Mali *et al.* 2015).

Nutrient uptake by soybean

The data on the effect of the INM treatments on total N, P and K uptake by soybean are presented in table 2. The data indicated that the higher N, P and K uptake by soybean (96.04, 21.19 and 33.50 kg ha⁻¹) was with the application of 50% N through glyricidia +50% N through inorganics+ biofertilizers + 25 kg K ha⁻¹ and was on par with application of 100% NP+25kg K ha⁻¹ + biofertilizers. The increase in N uptake on application of inorganic in combination with organics is due to increase in yield, effective root system and increased concentration of nutrients in soil solution as well as better soil physical environment coupled with sufficiency of water and nutrients helped in better uptake of water and nutrients (Mali *et al.* 2015).

Rain water use efficiency

The data on rain water use efficiency (RWUE) indicated that during the first two years (2009 and 2010), the higher RWUE was recorded in treatment T₆ (100% NP +25kg K ha⁻¹+biofertilizers),while from third year onwards the higher RWUE was recorded in treatment having 50% N through Gliricidia +50% N through inorganics + biofertilizers + 25 kg K ha⁻¹), indicating the important role of INM in increasing the RWUE (Table 3).

Gross monetary returns (GMR)

During 2009 and 2010, higher GMR was recorded in 100% RDF + 25kg K ha⁻¹ + biofertilizers (T_6) followed by the application of 50% N through Gliricidia +50% N through inorganics +biofertilizers +25 kg K ha⁻¹ (T_9) while in 2011,2012 and 2013, the higher gross

Table 2. Effect of INM on nitrogen uptake by soybean (kg ha⁻¹)

	Treatments	To	tal uptal	ke
		N	P	K
T_1	Control	52.79	10.15	18.39
T_2	100% NP (30:75:00 NPK kg ha ⁻¹)	72.35	13.50	24.56
T_3	100% NP + biofertilizers	77.29	15.93	26.91
T_4	100% N through FYM + biofertilizers	62.72	12.64	22.43
T_5	100% NP + 25kg K ha ⁻¹	84.21	17.29	29.45
T_6	100% NP + 25kg K ha ⁻¹ + biofertilizers	87.84	19.48	30.92
T_7	50% N through green leaf manure + 50% N through inorganics	68.67	15.27	25.74
T_8	50% N through green leaf manure + 50% N through inorganics + biofertilizers	84.95	18.52	29.97
T ₉	50% N through green leaf manure +50% N through inorganics+biofertilizers + 25kg K ha ⁻¹	96.04	21.19	33.50
	SE (m) <u>+</u>	3.55	0.64	1.37
	CD at 5%	10.64	1.91	4.12

Table 3. Effect of INM on rain water use efficiency (kg ha⁻¹mm⁻¹)

	Treatments	2009	2010	2011	2012	2013
T_1	Control	2.04	1.96	3.00	2.52	1.29
T_2	100% NP (30:75:00 NPK kg ha ⁻¹)	2.33	2.39	3.18	2.95	1.46
T_3	100% NP + biofertilizers	2.40	2.54	3.13	3.01	1.49
T_4	100% N through FYM + biofertilizers	2.14	2.28	3.12	2.73	1.42
T_5	100% NP + 25kg K ha ⁻¹	2.51	2.63	3.20	3.10	1.64
T_6	100% NP + 25kg K ha ⁻¹ + biofertilizers	2.65	2.72	3.60	3.17	1.68
T ₇	50% N through green leaf manure + 50% N through inorganics	2.22	2.30	3.54	3.09	1.44
T ₈	50% N through green leaf manure + 50% N through inorganics + biofertilizers	2.30	2.30	3.67	3.05	1.63
T ₉	50% N through green leaf manure +50% N through inorganics+ biofertilizers + 25kg K ha ⁻¹	2.37	2.32	3.69	3.44	1.73

monetary returns were recorded with the application of 50% N through Gliricidia + 50% N through inorganics+biofertilizers+25kg K ha⁻¹ (T_9) followed by 100% NP + 25kg K ha⁻¹ + biofertilizers (T_6) (Table 4). However the pooled results indicated slightly higher GMR in treatment T_6 .

Net monetary returns (NMR)

The data on NMR 4 indicated that during first three years (2009 to 2011) of experimentation, the higher net monetary returns were observed with 100% RDF+25kg K ha⁻¹+biofertilizers (Table 4) while in last two years (2012, 2013), the higher NMR were obtained with the application of 50% N through Gliciridia +50% N through inorganics+biofertilizers+25kg K ha⁻¹. During the initial years significantly higher grain yield was obtained with the application 100 % RDF + 25 kg K along with biofertilizers which reflected in net returns of soybean. However, from third year onwards, the significantly highest NMR was obtained with the application of 50% N through GLM + 50 % N from chemical fertilizers + 25 kg K along with biofertilizers.

The pooled data indicated slightly higher NMR in treatment T₆. During fiveyear study, the increase in net returns due to substitution of 50 % N from GLM rangedfrom 544 to 10535 Rs ha⁻¹ and on an average increase was 4171 Rs ha⁻¹ over 100 % NPK (T2). The increase in net returns due to application of N in 50:50 proportion through green lopping and inorganic + 25 kg K (inorganic) along with biofertilizers ranged from 880 to 5813 Rs ha⁻¹ over 100 % NP + 25 kg K along with biofertilizers.

Growing soybean crop with alone NPK or FYM was not economically beneficial over 50 % N from green lopping + 50 % N from inorganic + 25 kg K (inorganic) along with biofertilizers, when cost of FYM was considered. FYM was the most commonly used organic manure in the past. However, due to its acute shortage in recent days its use has become very scare and rare which is by and large responsible for decline in soil quality. Gliricidia can serve as the most potential alternative to FYM. The practice of Gliricidia green leaf

manuring is simple as it can be grown on the field bunds successfully since it is quick growing species. It produces significant amount of green biomass which can be easily used for partially substituting costly chemical fertilizers. Its application on farmers field minimizes the expenses on chemical fertilizers besides improvement in soil quality. Net returns and benefit:cost ratio recorded from Gliricida biomass-treated plots was far higher than those of FYM-treated plots because of relatively higher procurement cost of the latter. Mong'omba and Akinnifesi (2020) reported that the use of Gliciridia biomass reduced a high inorganic fertilizer requirement as a combination of either a half or full dose of inorganic fertilizer with Gliciridia biomass increased maize grain yield with almost the same amount. In such situation, farmers can reduce the quantity of inorganic fertilizer by half in soybean upto 50 % N through Gliciridia and hence farmers are better off using gliricidia biomass with reduced rate of recommended inorganic fertilizer as this saves the costs of inorganic fertilizer.

B:Cratio

The data on B:C ratio (Table 4) indicated that during first three years (2009 to 2011) of experimentation, the higher B:C ratio were obtained with 100% NP + 25kg K ha⁻¹ + biofertilizers (T_6) while in last two years (2012, 2013) the higher B:C ratio were obtained with the application of 50% N through glyricidia +50% N through inorganics +biofertilizers + 25kg K ha⁻¹ (T_9). The pooled results indicated comparable B:C ratios in T_6 and T_9 treatments. The pooled data in respect of NMR and B:C ratio (Table 4) also indicated the comparable NMR and B:C ratio in treatments T_6 and T_9 .

Organic carbon

The results presented in table 5 showed that, there was a build-up of organic carbon in soil in all treatments except control over the initial status (5.2 g kg⁻¹). The higher soil organic carbon 6.40g kg⁻¹ was observed with the application of 50% N through Gliciridia +50% N through inorganics+ biofertilizers + 25kg K ha⁻¹ (T₉) and was on par with application of 100%

Table 4. NMR (Rs ha⁻¹) of various treatments in soybean

			Net mo	netary re	Net monetary returns (Rs. ha ⁻¹)	3. ha ⁻¹)				B:C ratio	ratio		
	Treatments	2009	2010	2011	2012	2013	Mean	2009	2010	2011	2012	2013	Mean
\mathbf{T}_1	Control	12562	25413	13530	36070	13576	20230	1.97	2.45	1.80	2.97	1.78	2.19
T_2	100% NP (30:75:00 NPK							1.86	2.54	1.65	2.58	1.49	2.02
	kg ha ⁻¹)	13318	31637	12858	38867	11594	21655				1	-	1
T_3	100% NP + biofertilizers	13521	33950	11362	39262	11446	21908	1.83	2.58	1.55	2.54	1.47	1.99
T_4	100% N through FYM +							1 26	1.06	,	101	1 00	1 5.4
	biofertilizers	6975	24929	7627	28997	2571	14220	1.55	1.90	1.32	1.97	1.08	1.34
T_5	$100\% \text{ NP} + 25 \text{kg K ha}^{-1}$	15287	36230	12611	41733	15513	24275	1.96	2.72	1.63	2.67	1.64	2.12
T_6	100% NP + 25kg K ha ⁻¹ + biofertilizers	16155	37373	15620	42324	15511	25397	1.96	2.70	1.74	2.63	1.62	2.13
T_7		,		,		9	1	;		;		,	!
	manure + 50% N through	11622	28862	15139	43940	13029	22518	1.73	2.34	1.73	2.94	1.60	2.07
	inorganics												
$\frac{1}{8}$	50% N through green leaf												
	manure + 50% N through	11670	27838	15449	42163	16568	22738	1.69	2.25	1.71	2.79	1.73	2.04
	inorganics + biofertilizers												
T_9	50% N through green leaf												
	manure +50% N through	10017	77027	15176	02002	10700	24605	17.1	2,00	1 70	3.00	1 63	2 11
	inorganics+ biofertilizers	1771	75617	02451	00000	10/30	C0047	1./1	2.7	1./0	3.03	1.02	7.11
	+ 25kg K ha ⁻¹												
	$SE(m) \pm$	1341	2359	1592	2790	1964	876						
	CD at 5%	4021	7071	4774	8364	5889	2612						

Average cost of inputs and outputs: FYM - @ Rs. 2800 ha⁻¹, urea @ Rs. 5.7 kg ⁻¹, SSP @ Rs. 8 kg⁻¹, MOP @ Rs. 16 kg ⁻¹, COC for T1 to T9 :Rs. 16656, 20824, 21712, 26030, 21216, 22143, 20524, 21405 and 21765 ha⁻¹ respectively; Soybean grain @ Rs. 3200 qt⁻¹ and soybean straw @ Rs. 75 qt⁻¹

Table 5. Effect of INM on organic carbon and fertility status of soil

		0C	Availa	Available nutrients	trients	0 0	Nut	Nutrient balance	lance
			D	$(kg ha^{-1})$		balance		$(kg ha^{-1})$	
	Treatments	$(g kg^{-1})$	Z	Ь	¥	$(g kg^{-1})$	Z	Ь	K
Γ_1	Control	5.11	189.00 11.20	11.20	312.63	-0.09	-6.00	-4.30	-6.37
T_2	100%NP (30:75:00 NPK kg hd)	5.33	197.78 13.03	13.03	316.92	0.13	2.78	-2.47	-2.08
T_3	100%NP+ biofertilizers	5.47	199.03 14.80	14.80	318.83	0.27	4.03	-0.70	-0.17
T_4	100% N through FYM + biofertilizers	5.64	190.67 13.12	13.12	316.66	0.44	-4.33	-2.38	-2.34
T_5	$100\% \text{NP} + 25 \text{kg K ha}^{-1}$	5.91	209.07 13.86	13.86	347.39	0.71	14.07	-1.64	28.39
T_6	100% NP + 25 kg K h \dot{a} + biofertilizers	6.21	211.16 16.99	16.99	352.65	1.01	16.16	1.49	33.65
T_7	50% N through green leaf manure + 50% N through inorganics	00.9	197.36 14.31 330.03	14.31	330.03	0.80	2.36	-1.19	11.03
$\frac{1}{2}$	50% N through green leaf manure + 50% N through inorganics + biofertilizers	6.18	201.54 16.37 340.67	16.37	340.67	86.0	6.54	0.87	21.67
T_9	50% N through green leaf manure +50% N through inorganics+ biofertilizers + 25kg K hā $^{\rm l}$	6.40	215.34 17.34 357.95	17.34	357.95	1.20	20.34	1.84	38.95
	SE (m) <u>+</u>	80.0	4.77	09.0	3.55	1	1	1	1
	CD at 5%	0.23	14.29	1.80	10.65	1	1	ł	1
	Initial (2009-10)	5.2	195	15.5	319	1	1	1	1

+25kg K ha⁻¹+biofertilizers (T₆) and 50% N NP Gliciridia + 50% N through inorganics +biofertilizers (T₈) while lowest organic carbon content (5.11g kg⁻¹) was observed in control. The treatment having Gliciridia and fertilizers with biofertilizer had 0.49 and 1.07 organic carbon (8.3 and 20.1 % higher) compared to application 100 % NP (30:75:00 kg NPK ha⁻¹) and 100 % NP with 30 kg K ha⁻¹. The increase in soil organic carbon with integrated use of Gliciridia and chemical fertilizers with biofertilizer was due to direct incorporation of organic matter, better root growth and addition of more plant residues. These results suggest that soil carbon levels can be improved substantially even under semi-arid regions by regular addition of organic manures along with mineral fertilizers.

The continuous increase in soil organic carbon in treatments receiving different organics may be due to their stimulating effect on growth and activity of microorganisms. This effect was further enhanced by addition of fertilizers that improved the root and shoot growth. Higher production of root biomass might have increased the organic carbon content (Bajpai *et al.* 2006).

The treatments of chemical fertilizers also had higher organic carbon in comparison to unfertilized control, because it helped in higher contribution of biomass to soil in the form of greater root biomass through crop residues. The subsequent decomposition of these materials might have resulted into enhanced organic carbon content of soil. This clearly demonstrated that use of Gliciridia loppings along with reduced fertilizer dose was equally effective in enhancing SOC in Vertisols under rainfed conditions.

Organic carbon balance

The data on the organic carbon balance (Table 5) indicated higher gain of organic carbon with the application of 50% N through Gliciridia +50% N through inorganics+ biofertilizers + 25kg K ha⁻¹ (T₉) followed by treatment T₆ and T₈.

Soil water and temperature are the limiting factors of the dryland agriculture and have direct influence on the soil organic carbon. Natural incorporation of the crop residues in to the soil after harvest of the crop is common phenomenon, but year after year, continuous addition of the crop residues or green manuring or even FYM has a very little effect on soil organic carbon in dryland condition. The soil moisture availability in dryland area soils is only for a period of 150 days, which hamper the *in-situ* decomposition process of crop residues/green manures, on the other hand rise in summer temperature may lead to oxidation of the organic carbon. Hence, under the dryland conditions judicious integration of nutrients is very much essential.

Available nitrogen

The residual soil fertility was significantly increased due to different treatments receiving 50 % N through FYM, GLM or their combinations along with chemical fertilizers (Table 5). Application of 50 % N from GLM + 50 % N from inorganic + 25 kg K along with biofertilizers (T9), 100 % NP + 25 kg K along with biofertilizers (T6) and 50 % N from GLM + 50 N from fertilizers along with biofertilizers increased 8.9, 6.8 and 1.9 % available N than 100 % NP from chemical fertilizers (T2). This increase was due to direct addition of N from Gliciridia and nitrogen fixation by nodules of green manuring crop into the soil as compared to the other treatments. Beside this, soils under gliricidia lopping along with NPK fertilizer treated plots produced more plant biomass and therefore, possibly had more extensive root system that might have contributed to increased N availability in soil (Choudhary et al. 2018). Similar enhancement in available N due to green manuring with reduction in fertilizer dose in Vertisols of semi-arid region was also reported by Sonune et al. (2012) and Pawar et al. (2013).

The available N status although showed increase under INM, it has not been increased much due to the prevailing climatic condition accelerating oxidation of organic matter as well as the nature of nitrogen forms in soil and its losses through volatilization and leaching. This necessitates regular addition of organics for maintenance of soil fertility in the soils of semi-arid ecoregions. (Mali *et al.* 2015).

Available phosphorus

The highest available P (17.34 kg ha⁻¹) was recorded in treatment receiving 50% N through Gliciridia +50% N through inorganics+ biofertilizers + 25 kg K ha⁻¹ followed by 100% NP + 25 kg K ha⁻¹ + biofertilizers (T₆) (16.99 kg ha⁻¹) and 50% N Gliciridia + 50% N through inorganics +biofertilizers (T₈) (16.37 kg ha⁻¹) which were found at par with each other. The increase in Olsen P due to treatment receiving 50 % N from Gliciridia + 50 % N from fertilizers + 25 kg K along with biofertilizers (T9), 100% NP + 25 kg K ha⁻¹ + biofertilizers (T₆) and 50% N Gliciridia + 50% N through inorganics +biofertilizers (T₈) was to the tune of 33.1, 30.4 and 25.6 % over 100 % NP (T2). The lowest available P (11.20 kg ha⁻¹) was recorded in control treatment. The application of Gliciridia loppings with fertilizer P resulted in appreciable enhancement in Olsen P owing to additional supply of P through organic manures and partly due to reduction of applied P in soil (Singh et al. 2007). Moreover, organic matter decomposition produces organic acids, which help in solubilization of soil fixed P (Mohorana et al. 2012). Similarly, significantly highest available phosphorus content (38.0 kg ha⁻¹) in the soils was observed with the application of Gliciridia loppings and nitrogen @ 90 kg ha⁻¹under minimum tillage (Sharma *et al.* 2020).

Available potassium

The highest available K (357.9 kg ha⁻¹) was observed in treatment having 50% N through glyricidia+50% N through inorganics+ biofertilizers + 25kg K ha⁻¹ followed by 100% NP + 25 kg K ha⁻¹ + biofertilizers (T_6) (352.6 kg ha⁻¹) and 100% NP + 25kg K ha⁻¹ (T5) (347.39 kg ha⁻¹) which were found at par with each others. The increase in available K due to treatment 50 % N from Gliciridia + 50 % N from fertilizers + 25 kg K along with biofertilizers (T9), 100% NP + 25 kg K ha⁻¹ + biofertilizers (T_6) and 100% NP + 25kg K ha⁻¹ (T5) was to the magnitude of 12.9, 11.3 and 9.6 % over 100 % NP (T2).

Available K was also significantly higher in the

Gliciridia-containing treatments as compared with 100 % NPK (T2). This could be attributed to a very high K content of Gliricidia biomass and its release into the soil. The higher fertility status (particularly N and P) treated with Gliciridia caused higher crop yields. The lowest available nitrogen was observed in absolute control (T₁). These results clearly suggest that application of 100 % RDF without K was not effective for sustaining the residual soil fertility. The increase in availability of NPK attributed to N mineralization besides addition (Tolanur and Badanur 2003), solubilization of native P and reduction of P fixation and direct addition of K to the available pool of soil with reduction in K fixation and release of K (Sharma *et al.* 2001).

Nutrient balance

The data on the effect of INM treatments on nutrient balance (Table 5) indicated the higher gain of nitrogen in treatment T_9 (50% N through Gliciridia +50%N through inorganics+ biofertilizers +25kg K ha⁻¹) over 100% NP K and 100 % RDF with K. This clearly indicated that 50% chemical fertilizer can be safely substituted with 50% N through green leaf manure along with recommended K and biofertilizers.

In general, significant gain in available nitrogen was observed in treatments barring treatment T_4 and control. The data also indicated the loss of phosphorus in all the treatments except the treatments T_6 , T_8 and T_9 where biofertilizer and 25 kg K was applied. The higher gain in phosphorus was recorded in treatment T_9 followed by T_6 and T_8 . In order to minimize the conversion of plant available phosphate to unavailable form due to the calcareous nature of black soil 21% calcium content in the SSP fertilizer, the addition of green leaf manure in combination with fertilizers is necessary which not only contain phosphorus but also increases the availability to crops in dryland condition.

The data also indicated the loss of potassium in all the treatments where potassium was not applied. However, gain of potassium was recorded in all INM treatments and other treatments where potassium was applied. The higher gain of potassium was recorded with the application of 50% N through Gliciridia +50% N

through inorganics+biofertilizers+25kg K ha⁻¹(T_9) followed by application of 100% NP +25kg K ha⁻¹+biofertilizers (T_6) and100% NP +25kg K ha⁻¹(T_5). In general, the treatments (T_5 , T_6 , T_8 , T_9) which received 25 kg K/Gliciridia loppings in combination with fertilizers had higher available potassium over other treatments. This may be due to the fact that Gliciridia contains K_2O and addition of 2 t Gliciridia ha⁻¹ as a source of 15kg N ha⁻¹ add about same quantity of K_2O ha⁻¹ to soil.

Conclusion

For sustaining soil fertility, soybean productivity and obtaining higher monetary returns, application of 50% recommended N (15kg ha $^{-1}$) through glyricidia+50% N through inorganics + biofertilizers + 75kg P_2O_5 + 25kg K_2O ha $^{-1}$ is recommended as an Integrated Plant Nutrient Supply System under dryland condition.

References

- Babar, S. and Dongale, J.H. (2013). Effect of organic and inorganic fertilizers on soil fertility and crop productivity under mustard-cowpea-rice cropping sequence on lateritic soil of Konkan. *Journal of the Indian Society of Soil Science* **61**, 7-14.
- Bajpai, R.K., Chitale, S., Upadhyay, S.K. and Urkurkar, J.S. (2006). Long-term studies on soil physicochemical properties and productivity of rice-wheat system as influenced by integrated nutrient management in Inceptisol of Chhattisgarh. *Journal of the Indian Society of Soil Science* **54**, 24-29.
- Blaise, D. (2011). Tillage and green manure effects on Bt transgenic cotton (*Gossypium hirsutum* L.) hybrid grown on rainfed Vertisols of central India. *Soil and Tillage Research* 114, 86-96.
- Choudhary, S. G., Yaduvanshi, N.P.S., Chudhari, S. K., Sharma, D.R., Nayak, D. C. and Singh, S. K. (2018). Effect of nutrient management on soil organic carbon sequestration, fertility, and productivity under rice-wheat cropping system

- in semi-reclaimed sodic soils of North India. Environmental Monitoring and Assessment 190, 117.
- Dass, A., Sudhishri, S., Lenka, N. K. (2013). Integrated nutrient management to improve finger millet productivity and soil conditions in hilly region of Eastern India. *Journal of Crop Improvement* **27**, 528-546.
- Gabhane, V.V., Sonune, B.A. and Katkar, R.N. (2014).

 Long term effect of tillage and integrated nutrient management on soil quality and productivity of rainfed cotton in Vertisols under semi-arid conditions of Maharashtra. *Indian Journal of Dryland Agricultural Research and Development* 29,71-77
- Hanway, J. J. and Heidel, H. (1952). Soil Analysis Methods, as used in Iowa State. College Soil Testing Laboratory, Iowa, Agriculture **57**, 1-31.
- Katyal, J. C., Paroda, R. S., Reddy, M. N., Varma, A. and Rao, N. H. (1999). Agricultural Scientists Perceptions on Indian Agriculture: Scene, Scenario and Vision, National Academy of Agricultural Sciences, New Delhi.
- Katyal, J. C., Rao, N. H. and Reddy, M. N. (2001). Critical aspects of organic matter management in the tropics: the example of India. *Nutrient Cycling in Agroecosystems* **61**, 77-88.
- Kihara, J., A. Bationo, D. N. Mugendi, C. Martious and Vlek. P. L. G. (2011). Conservation tillage, local organic resources and nitrogen fertilizer combinations affect maize productivity, soil structure and nutrient balances in semi-arid Kenya. *Nutrient Cycling in Agroecosystems* **90**, 213–225.
- Lehmann, J., Schroth, G. and Zech, W. (1995). Decomposition and nutrient release from leaves, twigs and roots of three alley-cropping tree legumes in central Togo. *Agroforestry Systems* **29**, 21–36.
- Mali, D.V., Kharche, V. K., Jadhao, S. D., Katkar, R. N.,Konde, N. M., Jadhao, S. M. and Sonune, B. A.(2015). Effect of long term fertilization and manuring on soil quality and productivity under

- sorghum (Sorghum bicolor)-wheat (Triticum aestivum) sequence in Inceptisol. Indian Journal of Agricultural Sciences 85, 695–700.
- Mong'omba, Simon A. and Akinnifesi Festus, K. (2020). Effect of soil amendment with Gliricidia sepium and Tephrosia vogelii biomass on maize yield at Makoka in Malawi. *Agroforestry Systems* **94**, 441–449.
- Manna, M.C., Swarup, A., Wanjari, R.H., Ravankar, H.N., Mishra, B., Saha, M.N., Singh, Y.V., Sahi, D.K. and Sarap, P.A. (2005). Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. *Field Crops Research* **93**, 264–280.
- Mohorana, P.C., Sharma, B.M., Biswas, D.R., Dwivedi, B. S. and Singh, R.V. (2012). Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet -wheat cropping system in an Inceptisol of subtropical India. *Field Crops Research* **136**, 32-41.
- Mundus, S., Menezes, R. S. C., Neergaard, A. and Garrido, M. S. (2008). Maize growth and soil nitrogen availability after fertilization with cattle manure and/or Gliricidia in semiarid North East Brazil. *Nutrient Cycling in Agroecosystems* **82**, 61–73.
- Nelson, D.W. and L.E. Sommers, (1982). Total carbon, organic carbon and organic matter. In 'Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties', (Eds. A.L. Page, R.H. Miller and D.R. Keeney). pp. 539-579. Soil Science Society of America Inc., Madison, Wisconsin, USA.
- Panse, V. G. and Sukhatme, P.V. (1971). Statistical Methods for Agricultural Workers. ICAR, New Delhi.
- Pawar, Y.D., Sonune, B.A., Gabhane, V.V. and Rewatkar, S.S. (2013). Effect of tillage and integrated plant nutrient supply strategies for enhancing seed cotton yield and soil quality indicators of Vertisol in semi arid region of

- Maharashtra. *Madras Agriculture Journal* **100**, 350-356.
- Piper, C.S. (1966). Soil and Plant Analysis, Hans Publishers, Bombay.
- Sharma, Hariom, Nahatkar S. and Patel M. M. (1996). Constraints of soybean production in Madhya Pradesh: An analysis. Bhartiya Krishi Anusandhan Patrika. 11,79-84.
- Sharma, K. L., Mandal, U. K., Srinivas, K., Vittal, K. P. R., Mandal, B., Grace, J.K. and Ramesh, V. (2005). Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. *Soil and Tillage Research* **83**, 246–259.
- Sharma, K.L., Indoria, A.K., Srinivas, K., Sammi Reddy, K., Ravindra Charry, G., Lal, M., Srinivasarao, Ch., Suma Chandrika, D., Osman, M., Prasad, J.V.N.S., Balloli, S.S., Pratibha, G., Parmar, B., Girija Veni, V., Pushpanjali, Vasavi, M., Haindavi P., and Gayatri, D.L.A. (2020). Effect of long-term use of tillage, crop residue and n application on phosphorus fractions in soil under sorghum (*Sorghum vulgare*) (L.)-castor system (*Ricinus Communis*) in rainfed Alfisol soils. *Communication in Soil Science and Plant Analysis* 51, 1-13.
- Sharma, M. P., Bali, S. V. and Gupta, D. K. (2001). Soil fertility and productivity of rice (*Oryza sativa*)—wheat (*Triticum aestivum*) cropping system in an Inceptisol as influenced by integrated nutrient management. *Indian Journal of Agricultural Sciences* 71, 82-86.
- Singh, Muneshwar, Sammi Reddy, K., Singh, V.P. and Rupa, T.R. (2007). Phosphorus availability to rice (*Oriza sativa* L.)—wheat (*Triticum estivum* L.) in a Vertisol after eight years of inorganic and organic fertilizer additions. *Bioresource Technology* **98,** 1474–1481.
- Sonune, B.A., Gabhane, V.V., Rewatkar, S.S. and Sawangikar, M. S. (2012). Productivity of rainfed cotton and soil health as influenced by tillage and integrated nutrient management in vertisols under semi-arid ago-ecosystem of Maharashtra. *Indian Journal of Dryland Agricultural Research and Development* 27, 10-17.

Subbiah, B.V. and Asija, G.L. (1956). A rapid procedure for the determination of available N in soils. *Current Science* **25**, 259-65.

- Swarup, Anand (2010). Integrated plant nutrient supply and management strategies for enhancing soil quality, input use efficiency and crop productivity. *Journal of the Indian Society of Soil Science* **58**, 25-31.
- Tiwari, S. P. (2001). Shattering the production constraints in soybean-based cropping systems. *JNKVV Research Journal* **35**, 1-10 USA.
- Tolanur, S. I. and Badanur, V. P. (2003). Changes in organic carbon, available N, P and K under integrated use of organic manure, green manure and fertilizers on sustaining productivity of pearl millet pigeon pea system and fertility of an Inceptisol. *Journal of the Indian Society of Soil Science* **51**, 254-57.
- Tomar, P.S., Verma, S.K., Gupta, N., and Bansal, K.N. (2018). Effect of long-term integrated nutrient

- management on productivity of pearl millet (*Pennisetum glaucum*) Mustard (*Brassica juncea*) cropping system and soil fertility in an Inceptisol. *Journal of the Indian Society of Soil Science* **66**, 295-299.
- Watanabe, F.S. and Olsen, S.R. (1965). Test of an ascorbic acid method of determining phosphorus in water and NaHCO3 extracts from the soil. *Soil Science Society of America Journal* **29**, 677-678.
- Xie Z. J., Tu, S. Z., Shah, F., Xu, C. X., Chen, J. R., Han, D., Liu, G. R., Li, H. L., Muhammad, I. and Cao, W. D. (2016). Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. *Field Crops Research* **188**, 142–149.
- Zaharah, A. R. and Bah, A.R. (1999). Patterns of decomposition and nutrient release by fresh Gliricidia (*Gliricidia sepium*) leaves in an ultisol. *Nutrient Cycling in Agroecosystems* **55**, 269–277.

Received: February, 2021 Accepted: May, 2021