

Soils of Thotapalli Major Irrigation Project of North- Coastal Andhra Pradesh: Physical and Chemical Properties

K. Himabindu¹, P. Gurumurthy^{*} and P.R.K. Prasad¹

Department of Soil Science & Agricultural Chemistry, Acharya N.G. Ranga Agricultural University, Agricultural College, Naira, Srikakulam-532 185, Andhra Pradesh, India

¹Department of Soil Science and Agricultural Chemistry, Agricultural College, Bapatla-522 101, Andhra Pradesh

Abstract: Physical and chemical properties of the soils were assessed for the ayacut area of Thotapalli major irrigation project of North-Coastal Andhra Pradesh. Six representative soil pedons were studied in Devarapalli, Gujjangivalasa, Patikivalasa, Gangada, Aamiti and Maddivalasa villages falling in ayacut area of Thotapalli major irrigation project. The soil texture ranged from sandy loam to sandy clay loam in upland pedons while sandy clay loam to clay in pedons under cultivated plains. In general, relatively low bulk density was recorded at surface horizons compared to sub-surface layers. Maximum water holding capacity, pore space and volume expansion increased with soil depth. The soils were acidic to alkaline in reaction, non-saline, low to medium in organic carbon content. The CEC ranged from 6.4 to 32.5 cmol (p+) kg⁻¹. The soil exchange complex was dominated by calcium followed by magnesium, sodium and potassium. The soils were found to be low in nitrogen, low to medium in phosphorus and medium to high in available potassium status. Manganese and copper were sufficient but zinc and iron were deficient in soils. The total silica (SiO₂) content of pedons varied from 48.10 to 71.40 per cent. Sesquioxide (R_2O_3) and the molar ratio of SiO₂ / R_2O_3 ranged from 19.01 to 32.4 per cent and varied from 3.74 to 6.59, respectively in different pedons. The SiO₂/Al₂O₃ ratio and the SiO₂ /Fe₂O₃ ratio varied from 4.43 to 7.65 and from 13.7 to 47.8, respectively. A significant positive correlation of clay content with cation exchange capacity (CEC), maximum water holding capacity (MWHC) was observed. Sand content was positively correlated with silica and negatively correlated with MWHC and volume expansion. Soil organic carbon had a significant positive correlation with soil pore space, available nitrogen, phosphorous, potassium, zinc, manganese, copper and iron, but a negative correlation with soil bulk density. Soil pH was positively correlated with CaCO₃ but negatively correlated with available phosphorous, potassium, zinc, manganese, and copper and iron. Soil CaCO₃ content was negatively correlated with available phosphorous, potassium, zinc, manganese, and copper and iron of the soil.

Key words: Soil characterization, soil physical properties, soil chemical properties

Introduction

Timely and reliable information on soils regarding their nature, extent and distribution along with their potentials and limitations, is important for optimum

*Corresponding author: (Email: peddintigurumurthy@gmail.com)

and sustainable utilisation of land resources (Shalima Devi and Anil Kumar 2010). Thotapalli reservoir, a major irrigation project comprises parts of Srikakulam and Vizianagaram district in North coastal Andhra Pradesh. The project has proposed ayacut area of 1, 83,950 acres. The knowledge of soils to their extent,

distribution, characteristics and potential use is essential for formulating the prospective land use plans. Necessity is always felt for soil database on ayacut area of the proposed irrigation project. However, so far, no effort has been made to study the genesis, characteristics and classification of these soils. Keeping these in view, the present investigation has been taken to characterise the soils of Srikakulam and Vizianagaram district under Thotapalli reservoir to maximise irrigation use efficiency and sustainable production.

Materials and Methods

The study area (18° 12' to 18° 32' N; 83° 29' to 83° 37' E) comprises parts of Srikakulam and Vizianagaram districts of the north coastal region of Andhra Pradesh under Thotapalli reservoir. Particle-size, bulk density (core sampler method) and particle density were determined by the specific gravity bottle method, as described by Piper (1966). Water holding capacity and volume expansion were determined by following the Keen Raczkowski's method as described by Sankaram (1966). Pore space was derived from the bulk density and particle density. Soil reaction (pH) and soluble salt concentration (EC) were estimated by the procedures outlined by Jackson (1973). The organic carbon content of the soil samples was estimated by Walkley and Black (1934) wet digestion method. Available nitrogen was assessed by the modified alkaline potassium permanganate method (Subbiah and Asija 1956). Available phosphorus in soil was extracted with 0.5 M NaHCO3 of pH 8.5 and measured on a spectrophotometer (Olsen et al. 1954). Available soil potassium was extracted with neutral normal ammonium acetate and measured on flame photometer (Jackson 1973). Available sulphur was estimated by 0.15 % calcium chloride extraction method as outlined by Williams and Steinbergs (1959) and measurement of its concentration in the extracts by turbidimetric procedure using barium chloride (Verma 1977). Calcium carbonate content of soil samples was determined by titrimetry of Piper (1966). Exchangeable bases and cation exchange capacity (CEC) were determined by a centrifuge extraction procedure using neutral normal ammonium acetate as described by Bower et al. (1952). available zinc, copper, iron and manganese in soils were extracted by DTPA and measured by atomic absorption spectrophotometer (Lindsay and Norvell 1978). Silica, sesquioxide, iron, alumina was assessed as per the procedure outlined by Hesse (1971).

Results and Discussion

Pedons 1 and 2 occurring on upland had sandy loam texture at the surface and sandy clay loam texture in sub-soils horizons. Pedon 3 and 5 of middle land had sandy clay loam throughout the depth (Table 1). Pedon 4 and 5 of plains had sandy clay loam to clay texture variations in soil texture were caused by the nature of parent material, *in-situ* weathering, and translocation of clay within soil pedon and age of soils. (Geetha Sireesha and Naidu 2013).

Bulk density of different horizons ranged from 1.33 to 1.62 Mg m⁻³ and increased with soil depth. There was significant negative correlation (r = -0.696**) between bulk density and organic carbon. Prabavathi et al. (2017) also reported similar findings in soils of Belagavi district of Karnataka. The particle density of soils of the study area ranged from 2.56 to 2.72 Mg m⁻³. The pore space in different horizons ranged from 37.45 to 48.88 per cent and decreased with depth. There was significant negative (r = -0.959**) correlation between pore space and bulk density and positive correlation with the organic carbon content of soil (r= 0.481*). The maximum water holding capacity (MWHC) in soils varied from 34.0 to 50.40 per cent and increased with depth. The soils of pedons 4 and 6 had high MWHC owing to high clay content. Satyavathi and Suryanayana Reddy (2003) also reported high water holding capacity in red and black soils of Northern Telangana. Pedons 1, 2, 3 and 5 showed relatively low MWHC. A significant positive correlation between MWHC and clay content (r = 0.895**) and a significant negative correlation between MWHC and sand content (r = -0.848**) was observed. The per cent volume expansion in soils varied from 3.10 to 30.1 per cent and had significant positive correlation (r = +0.605**) with clay content. Relatively high volume expansion was associated with pedons 4 and 6 (17.5 to 30.10 per cent) due to shrink-swell nature of soils. Increase in volume expansion with the increase in clay content was also observed by Gurumurthy et al. (1996).

Table 1. Physical properties of soils

Horizon	Depth (m)	Coarse fraction (> 2.0 mm) (%)	Sand (%)	Silt (%)	Clay (%)	Bulk density (Mg m ⁻³)	Particle density (Mg m ⁻³)	Pore space (%)	Maximu m water holding capacity (%)	Volume expansion (%)
D.J., 1. T	Devarapalli ped	` ′					I I 4 I C		(,,)	
	0.00-0.10	4.5	<i>amy, mix</i> 62.2	18.6	iyperinei 19.2	ттіс туріс н 1.42	apiusiaij s 2.67	46.82	43.46	8.78
Ap Bw	0.10-0.10	3.1	58.0	17.5	24.5	1.42	2.64	43.18	45.69	9.81
Bt ₁	0.10-0.23	4.0	53.5	17.5	29.0	1.52	2.04	43.18	47.36	5.89
Bt_2	0.23-0.38	2.3	56.0	16.0	28.0	1.52	2.71	42.59	38.93	10.40
_	0.38-0.70	2.3	60.5	15.5	24.0	1.53	2.70	42.39	38.93	8.70
Bt_3		3.0		17.0	25.0	1.58				
Bt ₄	0.90-1.19+		58.0				2.63	39.54	38.65	9.00
	Gujjangivalasa						-		45.26	2.10
Ap	0.00-0.10	5.0	76.5	10.9	12.6	1.40	2.71	48.34	45.36	3.10
Bt_1	0.10-0.22	5.1	68.0	14.8	17.2	1.52	2.68	43.28	45.15	4.56
Bt_2	0.22-0.40	6.9	69.1	10.4	20.5	1.59	2.65	40.00	42.89	3.56
Bt_3	0.40-0.70	6.9	67.8	11.0	21.2	1.61	2.62	38.55	43.56	4.16
Bt ₄	0.70-0.98+	19.1	68.0	11.5	20.5	1.62	2.59	37.45	36.30	3.25
	Patikavalasa pe			-				46.01	42.00	10.00
Ap	0.00-0.10	5.43	61.3	14.4	24.3	1.42	2.64	46.21	43.00	12.80
Bw_1	0.10-0.30	5.64	60.5	13.0	26.5	1.49	2.68	44.40	42.56	14.40
Bw_2	0.30-0.50	5.13	58.2	16.1	25.7	1.55	2.66	41.73	41.14	15.00
Bw_3	0.50-0.80	6.01	59.9	13.6	26.5	1.60	2.59	38.22	38.56	11.40
Bw_4	0.80- 0.95+	8.03	63.2	12.5	24.3	1.61	2.61	38.31	36.60	9.30
	Gangada pedon									
Ap	0.00-0.09	5.1	55.2	15.8	29.1	1.37	2.68	48.88	47.70	20.00
Bw_1	0.09-0.40	5.6	51.0	14.1	34.9	1.40	2.64	46.97	49.00	19.60
Bw_2	0.40-0.62	6.3	48.1	15.0	36.9	1.45	2.60	44.23	50.40	17.50
Bw_3	0.62-0.82	7.1	53.4	13.2	33.4	1.46	2.61	44.06	46.00	24.60
Bw_4	0.82 - 1.02 +	21.5	54.3	14.1	31.6	1.51	2.56	41.02	42.10	17.50
Pedon 5: A	lamiti pedon :						istepts			
Ap	0.00-0.16	5.1	65.3	13.7	21.0	1.48	2.72	45.59	39.10	9.20
Bw_1	0.16-0.30	5.6	61.2	15.6	23.2	1.51	2.70	44.07	42.10	12.40
Bw_2	0.30-0.48	6.3	58.1	16.6	25.3	1.55	2.66	41.73	40.10	14.80
Bw_3	0.48-0.70	7.1	56.4	18.4	25.2	1.60	2.70	40.74	38.40	11.20
Bw_4	0.70 - 0.90 +	26.3	61.4	15.0	23.6	1.61	2.66	39.47	34.00	9.80
Pedon 6: M	Iaddivalasa pe		smectitic							
Ap	0.00-0.13	0.8	43.0	18.9	38.1	1.33	2.58	48.45	44.10	26.50
Bw	0.13-0.32	0.8	41.5	17.0	41.5	1.41	2.64	46.59	49.60	28.60
Bss_1	0.32-0.55	0.4	39.0	17.0	44.0	1.45	2.60	44.23	46.60	30.10
Bss_2	0.55-0.74	0.5	39.0	18.9	42.1	1.41	2.58	45.35	44.60	28.00
Bss_3	0.74 - 1.15 +	1.1	37.3	17.5	45.2	1.52	2.60	41.54	42.60	29.00

Physico-chemical characteristics

The pH of the soil ranged from 4.87 to 8.71. Pedons 3, 4 and 6 were slightly alkaline (Table 2). Pedon 2 had acidic pH, while pedons 1 and 5 were neutral in reaction. In pedons 3, 4 and 6, the soil pH increased with depth due to increasing trend of CaCO₃ with soil depth (Meena *et al.* 2014 and Visalakshi Devi *et al.* 2015). The

electrical conductivity of the pedons ranged from 0.11 to 0.60 dS m⁻¹. The organic carbon content in soils of different horizons of pedons ranged from 0.110 to 0.619 per cent and decreased with soil depth as which surface layer got enriched with crop residue and addition of FYM. Warm climatic conditions of the study area caused rapid decomposition of organic matter resulting in low organic carbon content (Ashok Kumar and Jagdish Prasad 2010) in the soils. Calcium carbonate

Table 2. Physico-chemical properties of soils

Profile		pН	E.C (dS m ⁻¹)	Organic carbon (%)	Total nitrogen (%)	C/N ratio	CaCO ₃ (%)		Exchangeable bases				Base
No. & horizon	Depth (m)							CEC	Ca ²⁺	Mg^{2+}	Na ⁺	\mathbf{K}^{+}	saturation (%)
									cmol (p ⁺) kg ⁻¹				- (/0)
Pedon 1:	Devarapalli	nedon	: Fine-l	oamv. miye	d. isohvnert	hermic '	Typic Han	lustalfs					
Ap	0.00-0.10	6.23	0.13	0.534	0.039	9.54	- -	13.50	3.96	1.02	0.28	0.04	39.26
Bw	0.10-0.25	6.61	0.17	0.301	0.035	8.60	_	15.40	5.85	0.67	0.35	0.07	45.06
Bt_1	0.25-0.58	7.34	0.17	0.231	0.021	7.00	_	17.00	6.01	1.05	0.63	0.11	45.88
Bt_1	0.58-0.70	7.41	0.21	0.215	0.021	9.72	_	15.40	5.90	1.00	0.24	0.09	46.95
Bt_3	0.70-0.90	7.35	0.23	0.220	0.018	9.85	_	14.20	5.76	0.52	0.22	0.08	46.34
Bt ₄	0.90- 1.19+	7.48	0.23	0.205	0.012	8.40	-	14.20	5.72	0.60	0.21	0.10	46.69
Pedon 2:	Gujjangival	lasa ne	don: Fin	e-loamy, m	ixed. isohyn	ertherm	ic Typic H	anlustuli	ts				
Ap	0.00-0.10	4.87	0.11	0.376	0.036	7.67		6.40	0.88	0.22	0.10	0.06	23.33
Bt ₁	0.10-0.22	5.43	0.11	0.256	0.028	9.14	_	7.10	1.25	0.36	0.13	0.08	25.63
Bt_1	0.22-0.40	5.51	0.15	0.250	0.028	8.93	_	9.63	1.75	0.45	0.13	0.05	24.51
Bt_3	0.40-0.70	5.96	0.20	0.135	0.016	5.19	_	8.15	1.57	0.42	0.10	0.06	26.38
	0.70-												
Bt_4	0.98+	5.50	0.26	0.123	0.014	5.13	-	8.15	1.72	0.48	0.14	0.05	29.33
Pedon 3:	Patikavalas	a pedo	n: Fine-	loamy, mixe	ed, isohyperi	thermic	Тур іс Нар	lustepts					
Ap	0.00-0.10	7.23	0.19	0.330	0.031	10.65	1.3	15.30	8.35	1.05	0.25	0.10	63.73
$\overline{\mathrm{Bw}}_1$	0.10-0.30	7.48	0.20	0.226	0.020	7.53	3.4	17.20	8.86	1.01	0.72	0.12	62.27
Bw_2	0.30-0.50	7.54	0.22	0.196	0.017	6.53	3.0	14.20	7.36	1.31	0.28	0.09	63.66
Bw_3	0.50-0.80	7.91	0.23	0.180	0.014	6.43	7.0	11.70	6.90	1.22	0.33	0.06	72.74
Bw_4	0.80- 0.95+	8.28	0.31	0.135	0.014	4.66	9.5	13.50	8.23	1.38	0.41	0.03	74.44
Pedon 4:	Gangada p	edon : I	Fine, sm	ectitic, isoh	yperthermic	Vertic 1	Haplustepi	ts					
Ap	0.00-0.09	7.88	0.39	0.450	0.054	9.06	3.15	27.35	20.80	2.18	0.71	0.13	87.09
$\overline{\mathrm{Bw}}_1$	0.09-0.40	8.04	0.43	0.316	0.036	8.78	6.30	31.80	24.70	2.24	0.80	0.11	87.58
Bw_2	0.40-0.62	8.26	0.44	0.291	0.030	9.70	7.10	29.50	20.30	3.82	1.17	0.09	86.03
Bw_3	0.62-0.82	8.50	0.47	0.253	0.028	9.04	9.8	30.10	20.20	3.50	1.19	0.13	83.12
Bw_4	0.82- 1.02+	8.71	0.58	0.213	0.026	8.19	13.8	28.80	20.50	3.61	1.18	0.15	88.33
Pedon 5:	Aamiti ped	on : Fi	ne-loam	v, mixed, iso		nic Typic	: Hapluste	epts					
Ар	0.00-0.16	6.53	0.24	0.520	0.054	9.07	1	16.80	4.83	1.12	0.35	0.14	38.33
Bw_1	0.16-0.30	7.20	0.26	0.376	0.035	10.74	-	14.90	4.83	1.61	0.32	0.17	44.60
Bw_2	0.30-0.48	7.61	0.31	0.226	0.034	6.65	-	14.90	4.10	1.50	0.48	0.09	42.40
Bw_3	0.48-0.70	7.14	0.39	0.110	0.023	6.36	1.1	16.10	4.10	1.80	0.52	0.08	40.37
Bw_4	0.70- 0.90+	7.10	0.45	0.110	0.019	7.28	1.35	15.25	4.28	1.48	0.16	0.02	39.61
Pedon 6:	Maddivalas	a nedo	n : Fine.	smectitic, i	sohvnerthei	mic Chi	romic Han	lustert					
Ap	0.00-0.13	7.80	0.48	0.619	0.032	13.09	- -	29.10	18.90	2.18	0.50	0.10	74.50
Bw	0.13-0.32	8.16	0.56	0.302	0.024	7.21	1.1	32.50	20.10	3.04	1.32	0.18	75.82
Bss_1	0.32-0.55	8.12	0.45	0.231	0.017	8.56	1.1	32.50	20.00	3.35	1.25	0.12	76.06
Bss ₂	0.55-0.74	8.04	0.53	0.110	0.017	8.40	1.5	28.90	19.80	3.25	1.15	0.12	84.15
-	0.74-												
Bss_3	1.15+	7.91	0.60	0.110	0.013	9.17	2.9	31.10	21.60	3.46	1.05	0.10	84.28

content in pedon 3 ranged from 1.3 to 9.5 % and 3.15 to 13.8 % in pedon 4 and increased with depth owing to leaching of bicarbonate from upper layer during the rainy season and their subsequent precipitation as carbonate in the lower layer (Leelavathi *et al.* 2009). The cation exchange capacity of the soils varied from 5.40 to 32.5 cmol (p+) kg⁻¹ soil with irregular trend of distribution with depth. A significant positive correlation was found between CEC and per cent clay (r = 0.915**).

The exchange complex of the soils was dominated by Ca^{+2} followed by Mg^{2+} . Exchangeable sodium was relatively higher in pedons 4 and 6.

Elemental Composition of the Soil

The total silica (SiO₂) content in soils varied from 48.10 to 71.40 per cent (Table 3) and decreased with depth. Pedons 1, 2, 3 and 5 had higher content of

Table 3. Chemical composition of the soils (silica and sesquioxides)

Pedon 1:	: Devarapalli p	edon : F	ine-loam	y, mixed,	isohyperi	thermic T	уріс Нар	lustalf					
Ap	0.00-0.10	67.00	27.43	19.80	7.63	1.117	0.242	0.194	0.0478	4.62	5.75	23.4	4.06
Bw	0.10-0.25	69.10	26.41	20.10	6.31	1.152	0.237	0.197	0.0395	4.87	5.84	29.1	4.99
Bt1	0.25-0.58	61.60	25.84	19.80	6.04	1.027	0.232	0.194	0.0378	4.43	5.29	27.1	5.13
Bt2	0.58-0.70	66.10	29.05	21.90	7.15	1.102	0.259	0.215	0.0448	4.25	5.13	24.6	4.80
Bt3	0.70-0.90	70.00	25.70	18.10	7.60	1.167	0.225	0.177	0.0476	5.18	6.57	24.5	3.73
Bt4	0.90-1.19+	65.80	28.24	22.90	5.34	1.097	0.258	0.225	0.0334	4.25	4.88	32.8	6.71
Pedon 2	: Gujjangivalas	a pedon	: Fine-lo	amy, mix	ed, isohy	pertherm	ic Typic	Haplustui	lts				
Ap	0.00-0.10	71.40	27.80	17.70	10.10	1.190	0.237	0.174	0.0632	5.03	6.86	18.8	2.74
Bt_1	0.10-0.22	69.20	25.60	16.30	9.30	1.153	0.218	0.160	0.0582	5.29	7.22	19.8	2.74
Bt2	0.22-0.40	61.80	32.10	21.00	11.10	1.030	0.275	0.206	0.0695	3.74	5.00	14.8	2.96
Bt3	0.40-0.70	65.00	30.60	18.30	12.30	1.083	0.256	0.179	0.0770	4.22	6.04	14.1	2.33
Bt4	0.70 - 0.98 +	65.80	32.40	19.60	12.80	1.097	0.272	0.192	0.0802	4.03	5.71	13.7	2.40
Pedon 3	: Patikavalasa	pedon:	Fine-loai	ny, mixed	l, isohype	erthermic	Typic H	aplustepts	5				
Ap	0.00-0.10	63.15	28.41	21.50	6.91	1.053	0.254	0.211	0.0433	4.14	4.99	24.3	4.87
Bw1	0.10-0.30	66.14	26.94	20.90	6.04	1.102	0.243	0.205	0.0378	4.54	5.38	29.1	5.42
Bw2	0.30-0.50	61.25	23.00	18.20	4.80	1.021	0.208	0.178	0.0301	4.90	5.72	34.0	5.94
Bw3	0.50-0.80	59.80	25.93	20.90	5.03	0.997	0.236	0.205	0.0315	4.22	4.86	31.6	6.51
Bw4	0.80- 0.95+	61.25	24.01	19.50	4.51	1.021	0.219	0.191	0.0282	4.65	5.34	36.1	6.77
Pedon 4:	: Gangada ped	on : Fine	, Smectit	ic, isohyp	erthermi	c Vertic I	Hapluste	pts					
Ap	0.00-0.09	54.20	24.10	19.60	4.50	0.903	0.220	0.192	0.0282	4.10	4.70	32.1	6.82
Bw1	0.09-0.40	56.60	22.70	16.60	6.10	0.943	0.201	0.163	0.0382	4.69	5.80	24.7	4.26
Bw2	0.40-0.62	49.20	22.50	18.90	3.60	0.820	0.208	0.185	0.0225	3.95	4.43	36.4	8.22
Bw3	0.62-0.82	52.60	24.01	18.90	5.11	0.877	0.217	0.185	0.0320	4.03	4.73	27.4	5.79
Bw4	0.82 - 1.02 +	48.10	22.03	17.50	4.53	0.802	0.200	0.172	0.0284	4.01	4.67	28.3	6.05
Pedon 5.	: Aamiti pedon		•	xed, is oh	-	nic Typic	-	•					
Ap	0.00-0.16	60.60	26.94	17.60	9.34	1.010	0.231	0.173	0.0585	4.37	5.85	17.3	2.95
Bw1	0.16-0.30	57.10	23.30	15.70	7.60	0.952	0.202	0.154	0.0476	4.72	6.18	20.0	3.23
Bw2	0.30-0.48	62.50	24.70	17.10	7.60	1.042	0.215	0.168	0.0476	4.84	6.21	21.9	3.52
Bw3	0.48-0.70	57.30	25.10	16.80	8.30	0.955	0.217	0.165	0.0520	4.41	5.80	18.4	3.17
Bw4	0.70-0.90+	55.00	24.20	17.30	6.90	0.917	0.213	0.170	0.0432	4.31	5.40	21.2	3.93
Pedon 6.	: Maddivalasa			ctic, isoh		nic Chro	mic Hapl	ustert					
Ap	0.00-0.13	68.40	19.01	15.20	3.81	1.140	0.173	0.149	0.0239	6.59	7.65	47.8	6.25
Bw	0.13-0.32	63.30	22.96	18.60	4.36	1.055	0.210	0.182	0.0273	5.03	5.79	38.6	6.68
Bss1	0.32-0.55	70.50	22.72	16.80	5.92	1.175	0.202	0.165	0.0371	5.82	7.13	31.7	4.44
Bss2	0.55-0.74	59.10	28.04	21.90	6.14	0.985	0.253	0.215	0.0384	3.89	4.59	25.6	5.58
Bss3	0.74-1.15+	58.60	22.03	17.20	4.83	0.977	0.199	0.169	0.0302	4.91	5.79	32.3	5.58

sand fraction had pedons 4 and 6. There was positive correlation of silica with sand (r = +0.537). Rama Lakshmi *et al.* (2001) also reported similar findings Sesquioxide (R_2O_3) content ranged from 19.01 (pedon 6) to 32.4 (pedon 2) per cent. Pedon 2 had the variations in sesquioxide content might be due to the parent material, physiography, soil drainage and overall pedo-chemical environment (Leelavathi *et al.* 2009).

The aluminium oxide content in soils varied from 15.2 (pedon 6) to 22.9 (pedon 9) per cent. An irregular trend of alumina with depth was observed in all the pedons. Aluminium oxide is the major fraction of the sesquioxides and hence it followed the pattern of sesquioxides distribution. The iron oxide content varied from 3.60 to 12.8 per cent with variation within a pedon but large variation between pedons. (Ramprakash and Seshagiri Rao 2002).

The molar concentration of sesquioxide ranged from 0.173 to 0.275 moles and if increased with depth in pedon 2, 3, 4 and 5. The highest value was associated with Bt2 horizon of pedon 2 and the lowest value in the surface Ap. The alumina ranged from 0.149 (pedon 6) to 0.225 (pedon 9) moles and increased with depth in pedon 2, 4, 5 and 6. The molar concentration of iron oxide ranged from 0.0225 to 0.0802 in different pedons being highest in pedon 2.

The molar ratio of SiO_2/R_2O_3 varied from 3.74 to 6.59 in different pedons. SiO_2/Al_2O_3 ratio and the SiO_2/Fe_2O_3 ratio ranged from 4.43 to 7.65 and 13.7 to 47.8, respectively in different pedons. The molar ratio of Al_2O_3/Fe_2O_3 varied from 2.33 to 8.22 among all the pedons. In general, wider SiO_2/R_2O_3 , SiO_2/Al_2O_3 indicated that these soils are siliceous in nature. Pedons 4 and 6 had narrow ratio of the SiO_2/R_2O_3 and SiO_2/Al_2O_3 owing to relatively higher clay content and low sand content while, pedons 1, 2, 3 and 5 were associated with wider SiO_2/R_2O_3 and SiO_2/Al_2O_3 ratios, which could be ascribed to re-silication, a dominant process operating in these pedons. These results are in conformity with those of Ramprakash and Seshagiri Rao (2002).

Available macro nutrient status of soils

The available nitrogen content in the soils ranged from 32.9 to 111.3 kg ha⁻¹ (Table 4) and decreased

with depth. There was significant positive correlation ($r = 0.832^*$) between available nitrogen and organic carbon as also reported by Satish Kumar and Naidu (2012). The available phosphorus (P_2O_5) ranged from 6.0 to 68.3 kg ha⁻¹ and decreased with depth. In the surface horizon, the addition of organic matter and phosphatic fertilizer might have resulted in relatively higher available phosphorus (Visalakshi Devi *et al.* 2015). A significant positive correlation ($r = 0.515^{**}$) was recorded between organic carbon and available phosphorus content of the soil, but negative correlation ($r = -0.687^{**}$) between soil pH and available phosphorus of the soil.

The available potassium of the soils ranged from 109.4 to 575.16 kg ha⁻¹ being low in pedon 1, 2 and 5 owing to coarse textured soils.

Available micronutrient status of soils

The available zinc content ranged from 0.08 to 0.66 Mg kg⁻¹ with irregular distribution the pedons. The soils were deficient in available zinc barring Ap horizon of pedon 1, 5 and 6 decreased with depth. The available zinc was negatively correlation with soil pH (r = -0.623**) and positively correlated with soil organic carbon (r = 0.581**). The available copper content in soil varied from 0.36 to 2.64 Mg kg⁻¹ and these soils were sufficient in available copper. Available Cu in soils was positively correlated with organic carbon content (r = 0.456*). The available iron content in soils ranged from 2.49 to 9.54 Mg kg⁻¹ and decreased with depth. Considering the critical limit of 4.5 Mg kg⁻¹ (Lindsay and Norvell 1978), the pedons 3, 4 and 6 were deficient and pedons 1, 2 and 5 were sufficient in available iron content. The organic carbon due to its affinity to influence the solubility and availability of iron by chelation effect might have protected the iron from oxidation and precipitation, which consequently resulted in sufficient available iron in soils. The available manganese content ranged from 6.55 to 22.13 Mg kg⁻¹ and was sufficient in all the pedons against critical limit of 1.0 Mg kg⁻¹ proposed by Lindsay and Norvell (1978). Available manganese was relatively high in the surface horizons and decreased with depth,

Table 4. Available macro and micronutrient contents of the soils

Profile No. & horizon	Depth (m)	A	vailable m	acronutrie	n ts	Available micronutrients				
		N	P_2O_5	K ₂ O	S	Zn	Cu	Fe	Mn	
			ha ⁻¹		mg kg ⁻¹	mg		xg ⁻¹		
Pedon 1: Dev	varapalli pedon	: Fine-loar	ny, mixed,	isohyperth	ermic Typic	Haplustalj	f			
Ap	0.00-0.10	94.1	68.3	488.16	77.4	0.66	2.40	7.68	22.13	
Bw	0.10-0.25	81.5	39.3	240.90	72.5	0.27	1.56	4.94	11.32	
Bt_1	0.25-0.58	70.6	46.2	266.28	62.8	0.12	2.56	6.23	16.85	
Bt_2	0.58-0.70	70.6	18.5	318.15	62.0	0.14	1.32	5.16	16.85	
Bt_3	0.70-0.90	64.3	23.9	300.06	60.6	0.09	2.06	4.88	13.66	
Bt_4	0.90-1.19+	64.3	16.2	290.90	60.6	0.11	2.06	4.59	14.87	
Pedon 2: Guj	ijangivalasa ped	lon : Fine-	loamy, mi	xed, isohyp	erthermic Ty	pic Haplu	stults			
Ap	0.00-0.10	70.6	18.0	227.54	49.8	0.33	1.87	7.82	10.85	
Bw	0.10-0.22	70.6	14.5	157.53	42.5	0.14	1.32	7.45	14.11	
Bt_1	0.22-0.40	69.0	7.7	192.54	39.5	0.09	1.09	6.39	15.64	
Bt_2	0.40-0.70	66.0	12.0	196.91	41.2	0.08	1.32	5.06	13.26	
Bt_3	0.70 - 0.98 +	64.3	12.0	205.66	35.4	0.09	1.18	7.13	9.86	
Pedon 3: Pat	ikavalasa pedor	ı : Fine-loa	ımy, mixe	d, isohyperi	thermic Typi	c Hapluste	pts			
Ap	0.00-0.10	111.3	36.8	206.95	69.9	0.38	2.13	4.60	18.69	
Bw_1	0.10-0.30	103.4	18.0	109.4	55.0	0.14	1.56	4.29	12.33	
Bw_2	0.30-0.50	76.8	12.0	148.78	45.7	0.31	1.95	1.95	7.16	
Bw_3	0.50-0.80	72.1	12.8	190.03	32.0	0.13	1.06	3.24	6.55	
Bw_4	0.80- 0.95+	50.2	12.8	131.27	32.0	0.13	1.63	2.49	6.55	
Pedon 4: Gar	ngada pedon : I	ine, smect	itic, isohy	perthermic	Vertic Hapli	ustepts				
Ap	0.00-0.09	81.5	24.0	343.89	72.5	0.30	2.64	3.94	13.04	
Bw_1	0.09-0.40	39.2	09.1	475.16	65.0	0.11	2.41	4.12	12.31	
Bw_2	0.40-0.62	32.9	12.4	497.04	60.6	0.09	2.00	3.56	9.28	
Bw_3	0.62-0.82	36.1	10.0	300.80	62.9	0.09	0.86	2.90	8.00	
Bw_4	0.82-1.02+	40.8	6.0	453.28	40.5	0.10	0.43	2.69	9.89	
	niti pedon : Fii	ne-loamy, n	nixed, isol	hypertherm	ic Typic Hap	olustepts				
Ap	0.00-0.16	67.4	32.0	575.16	61.9	0.75	2.34	9.54	11.86	
Bw_1	0.16-0.30	61.2	25.4	306.40	45.7	0.39	1.31	8.62	9.23	
Bw_2	0.30-0.48	56.4	21.0	227.54	43.8	0.24	1.96	6.54	14.90	
Bw_3	0.48-0.70	61.2	18.2	332.56	35.4	0.15	0.38	7.14	10.20	
Bw_4	0.70 - 0.90 +	48.6	10.8	244.4	35.4	0.09	0.36	5.12	9.6	
Pedon 6: Ma	ddivalasa pedon	ı : Fine, sn	iectitic, is	ohypertheri	nic Chromic	Hapluster	rt			
Ap	0.00-0.13	94.1	20.5	379.41	89.2	0.93	2.56	4.23	9.36	
Bw	0.13-0.32	64.3	12.6	270.61	72.5	0.32	2.42	4.10	12.66	
Bss_1	0.32-0.55	64.3	8.5	275.10	72.5	0.18	1.92	3.16	10.2	
Bss_2	0.55-0.74	40.8	12.0	253.40	69.9	0.12	0.65	4.54	8.52	
Bss_3	0.74-1.15+	50.2	6.5	235.50	55.0	0.12	0.39	3.94	6.81	

Table 5. Correlation coefficients between various soil properties

Sr. No	Variables	Correlation coefficient (r)
1	Clay content vs. Volume ex pansion of soil	0.605**
2	Clay content vs. Maximum water holding capacity	0.895**
3	Clay content vs. Cation Exchange Capacity	0.915**
4	Sand content vs. Maximum water holding capacity	-0.848**
5	Sand content vs. Silica content	0.537*
6	Sand content vs. CEC	-0.683**
7	Soil pH vs. available phosphorus content of soil	-0.665**
8	Soil pH vs. available zinc content of soil	-0.623**
9	Soil pH and available iron	-0.697**
10	Soil pH vs. available copper content of soil	-0.436*
11	Soil pH vs. available manganese content of soil	-0.574*
12	Soil organic carbon content vs. available nitrogen content of soil	0.832**
13	Soil organic carbon content vs. available phosphorus	0.515*
14	Soil organic carbon content vs. available potassium	0.561*
15	Soil Organic carbon content vs. available zinc	0.580*
16	Soil organic carbon content vs. available copper	0.456*
17	Soil organic carbon content vs. available manganese	0.429*
18	Soil organic carbon content vs. available iron	0.623**
19	soil organic carbon content vs. bulk density	-0.696**
20	Pore space vs. bulk density	-0.959**
21	CaCO ₃ content vs. soil pH	0.715**
22	CaCO ₃ content vs. available phosphorus	-0.687**
23	CaCO ₃ content vs. available Zinc	-0.581*
24	CaCO ₃ content vs. available iron	-0.549*

^{*}Significant at 5 % level of degrees of freedom

which might be due to higher biological activity and organic carbon content in the surface horizons.

Conclusion

Soils of Thotapalli major irrigation project ayacut had texture ranging from sandy loam to clayey. Bulk density increased with depth but the reverse trend observed for pore space. Volume expansion and maximum water holding capacity were positively related with clay. The soils were acidic to alkaline in reaction and non-saline. Organic carbon was low to medium and decreased with depth. Available nitrogen content was low; available phosphorous was low to

medium; available potassium was medium to high. The soils were deficient in available zinc and sufficient in available manganese and copper. The pedons 3, 4 and 6 had low available iron. The soils were siliceous in nature. There was a wider variation in molar concentrations and molar ratios of oxides of silicon, iron and aluminium oxides.

Acknowledgement

The authors are indebted to Acharya NG Ranga Agricultural University for providing financial support and infrastructural facilities for the study.

^{**}Significant at 1 % level of degrees of freedom

References

- Ashok Kumar, H.P. and Jagdish Prasad (2010). Some typical sugarcane growing soils of Ahmadnagar district of Maharashtra: Their characterization, classification and nutritional status of soils and plants. *Journal of the Indian Society of Soil Science* **58**, 257-266.
- Bower, C.A., Reitmeir, R.F. and Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. *Soil Science* **73**, 251-261.
- Gurumurthy, P., Seshagiri Rao, M., Bhanu Prasad, V., Pillai, R.N. and Hariprasad Rao, K. (1996). The elemental composition and molar ratios of soils of Giddalur mandal of Andhra Pradesh. *The Andhra Agricultural Journal* **43**, 216-217.
- Hesse, P.R. (1971). 'A Text Book of Soil Chemical Analysis'. pp. 10-362. (John Murray Ltd., London).
- Jackson, M.L. (1973). 'Soil Chemical Analysis'. pp. 38. (Oxford IBH publishing house, Bombay)
- Leelavathi, G.P., Naidu, M.V.S., Ramavatharam, N. and Karuna Sagar, G. (2009). Studies on genesis, classification and evaluation of soils for sustainable land use planning in Yerpedu mandal of Chittoor district, Andhra Pradesh. *Journal of the Indian Society of Soil Science* **57**, 109-120.
- Lindsay, W.L. and Norvell, W.A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. *Soil Science Society of America Journal* **42**, 421-428.
- Meena, R.S., Natarajan, A., Thayalan, S., Hedge, R., Niranjana, K.V., Naidu, L.G.K. and Sarkar, D. (2014). Characterization and classification of lowland soils of Chikkarsinkere hobli, Maddur taluka, Mandya district of Karnataka. *Agropedology* **24**, 95-101.
- Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular No. 939. (USDA: Washington, D. C.).
- Piper, C.S. (1966). 'Soil and Plant Analysis'. pp. 59. (Hans Publications, Bombay).

- Prabhavathi, K., Dasog, G.S., Sahrawat, K.L., Patil, P.L. and Wani, S.P. (2017). Characterization and classification of soils from three agro-climatic zones of Belgavi district, Karnataka. *Journal of the Indian Society of Soil Science* **65**, 1-9.
- Ramalakshmi, Ch. S., Seshagirirao, M. and Bhanuprasad, V. (2001). Horizon-wise chemical composition of Haplustepts, Haplusterts and Ustipsamments of Bapatla-Kalapalem region of Guntur district of Andhra Pradesh. *The Andhra Agricultural Journal* 48, 111-113.
- Ramprakash, T. and Seshagiri Rao, M. (2002).

 Characterization and classification of some soils in a part of Krishna district, Andhra Pradesh. *The Andhra Agricultural Journal* **49**, 228-236.
- Sankaram, A. (1966). 'A Laboratory Manual for Agricultural Chemistry'. pp. 56-57. (Jaya Singer, Asia publishing House, Bombay).
- Satish Kumar, Y.S. and Naidu, M.V.S. (2012). Characteristics and classification of soils representing major landforms in Vadamalapeta mandal of Chittoor district, Andhra Pradesh.

 Journal of the Indian Society of Soil Science 60, 63-67.
- Satyavathi, P.L.A. and Suryanarayan Reddy, M.S. (2003). Characterization and classification of shallow, medium deep and deep red and black soils of northern Telangana in Andhra Pradesh. *Journal of Tropical Agriculture* **41**, 23-29.
- Shalima Devi, G.M. and Anil Kumar, K.S. (2010). Characterization and classification of coffee growing soils of Karnataka. *Journal of the Indian Society of Soil Science* **58**, 125-131.
- Sireesha, P.V.G. and Naidu, M.V.S. (2013). Studies on genesis, characterization, and classification of soils in semi-arid agro-ecological region: A case study in Banaganapalle mandal of Kurnool district in Andhra Pradesh. *Journal of the Indian Society of Soil Science* **61**, 167-178.
- Subbiah, B.V. and Asija, G.L. (1956). A rapid procedure for determination of available nitrogen in soils. *Current Science* **25**, 259-260.

- Verma, B.C. (1977). An improved turbidimetric procedure for the determination of sulphates in plants and soils. *Talanta* 24, 49-50.
- Vishalakshi Devi, P.A., Naidu, M.V.S. and Rao, A. (2015). Characterization and classification of sugarcane growing soils in central and eastern mandals of Chittor district in Andhra Pradesh. *Current Advances in Agricultural Sciences* 7, 41-48.
- Walkey, A. and Black, C.A. (1934). An examination of the method for determining organic carbon and proposed modification of chromic acid titration method. *Soil Science* **37**, 29-38.
- Williams, C.H. and Steinbergs, A. (1959). Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. *Australian Journal of Agricultural Research* **10**, 340-352.

Received: August, 2018 Accepted: March, 2019