

Soils of Thotapalli Major Irrigation Project of North-Coastal Andhra Pradesh: Characterization and Classification

K. Himabindu, P. Gurumurthy* and P.R.K. Prasad

Department of Soil Science and Agricultural Chemistry, Agricultural College, Bapatla-522101, Andhra Pradesh, India.

Abstract: Six representative pedons from Devarapalli (P₁), Gujjangivalasa (P₂), Patikivalasa (P₃), Gangada (P₄), Aamiti (P₅) and Maddivalasa (P₆) villages belonging to ayacut of Thotapalli major irrigation project of North-Coastal Andhra Pradesh were studied. Pedons 1, 2 and 5 were developed from granite-gneiss, while pedons 3, 4 and 6 had their parent legacy with granite-gneiss mixed with calcareous murrum. The soils of P₁ and P₂ were moderately deep to very deep having argillic horizon while cambic sub-surface diagnostic horizon was noticed in P₃, P₄ and P₅. Deep and wide surface cracks and slickensides close enough to intersect were observed in P₄ and P₆. The pedons P₁ P₂ P₃ and P₅ had sandy loam to sandy clay loam texure and it was clay loam to clay in cultivated plains (P₄ and P₆). The soils were low to medium in organic carbon content. The CEC ranged from 6.4 to 32.5 cmol (p+) kg⁻¹ and the soil exchange complex was dominated by calcium followed by magnesium, sodium and potassium. The ratio of CEC/ clay was low in P₂ medium in P₁, P₃ and P₅ and high in P₄. Devararapalli pedon was classified as Typic Haplustalfs, Gujjangivalasa as Typic Haplustults, Patikivalasa and Amiti as Typic Haplustepts, Gangada as Vertic Haplustepts and Maddivalas as Chromic Haplusterts.

Keywords: Soil characterization, classification, argillic horizon, cambic horizon, Vertisol, Inceptisol

Introduction

The knowledge of soils with respect to their extent, distribution, characteristics and potential use are important for optimising land use. The study of soils today has assumed an increased importance due to rapidly declining land area under agriculture, declining soil fertility and increasing soil degradation through unbridled population increase, urbanisation, improper land use policies and irrational use of inputs (Kanwar 2004). It is always required to create soil database on any ayacut area of proposed irrigation project which is lacking for Srikakulam and Vizianagaram district under Thotapalli reservoir to maximise. The irrigation use efficiency for sustainable crop production and hence present investigation was carried out.

Materials and Methods

The study area comprises parts of Srikakulam and Vizianagaram districts of north coastal region of Andhra Pradesh under Thotapalli reservoir. It is located between 18°12' to 18°33' N latitude and 83°29' to 83°38' E longitude. The location map of the area and site of representative pedons is presented in figure 1. The geology of the area is granite-gneiss with calcareous murrum (Table 1). The climate is semi-arid to sub-humid monsoonic type. The mean annual temperature and rainfall were 28.34 °C, 950.8 mm and 26.48 °C, 1108.7mm in Vizianagaram and Srikakulam districts, respectively. The soil moisture is *ustic* and soil temperature regime is iso-hyperthermic. The natural vegetation in the area comprises of *Borasus*

^{*}Corresponding author (Email: peddintigurumurthy@gmail.com)

falabellifera, Azadirachata indica, Cocas nucifera, Palmyrah spp, Cyprus spp, Cynodon spp, Euphorbia spp, Tridax procumbens, Calotropis spp, Lucas spp. and Typha spp.

Reconnaissance soil survey was conducted in the ayacut area of Thotapalli major irrigation canal during April to June, 2018 using Survey of India toposheets of 1: 50,000 scale as per the procedure outlined by AIS&LUS (1970). Auger bores, mini pits,

Table 1. Soil-site characteristics of different pedons

road cuts and 15 pedons located on uplands and plains were studied for their morphological properties. Six representative pedons were included in the present study (Table 2). Horizon-wise samples were collected and processed following standard procedures. These pedons were classified according to Soil Survey Staff (2014). Land capability classification up to subclass level was done based on limitations and potentials of soils (Klingebiel and Montgometry 1966) and land use plans were suggested.

Pedon	Profile location	Mandal	District	Slope %	Physio- graphy	Drainage	Parent material
P_1	Devarapalli	Ranastalam	Srikakulam	1-3	Uplands	Moderate to well drained	Granite-gneiss
P_2	Gujjangi- valasa	Gurla	Vizianagaram	1-3	Uplands	well drained	Granite-gneiss
P_3	Patikava- lasa	Cheepuru- palli	Vizianagaram	1-3	Uplands	Moderate to well drained	Granite-gneiss mixed with calcareous murrum
P_4	Gangada	Balijipeta	Vizianagaram	0-1	Plains	Poorly drained	Granite-gneiss mixed with calcareous murrum
P ₅	Amity	Therlam	Vizianagaram	1-3	Uplands	Moderate to well drained	Granite-gneiss
P_6	Maddiva- lasa	Vangara	Srikakulam	0-1	Plains	Poorly drained	Granite-gneiss mixed with calcarious murrum

Results and Discussion

Soil morphology

Pedon P_1 , P_2 and P_6 are more than 120 cm deep while P_3 and P_4 had calcareous murrum after 90 cm. Hard gravel layer was found after 80 cm in P_5 . These pedons had their colour in 10YR but in lower horizon colour was in 7.5 YR or 5YR. The Pedons P_1 , P_4 , P_5 and P_6 had variable texture ranging from coarse to fine with depth while P_2 and P_3 exhibited uniform texture throughout the profile. These variations are due to nature of parent material, *in situ* weathering, and translocation of clay and age of soils (Geethasireesha and Naidu 2013). Pedons P_1 and P_2 had granular structure at surface and sub-angular blocky in lower layers. Pedons P_4 and P_6 had angular blocky to blocky structure. Pedon P_3 and P_5

exhibited sub-angular blocky structure throughout the profile. The variation in structural development could be due to movement of clay and soluble material to lower layers as well as over burden pressure.

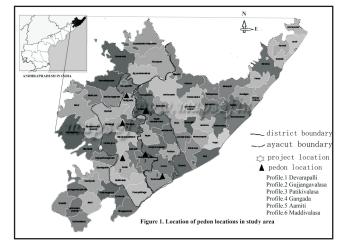


Table 2. The Morphological characteristics of the soils

Pry Moist S G T Dry Moist Wet	Profile		[0]	Colour	E		Structure			Consistence	on	Effe	Pores	sə		Concretions	ions	Roots		Bou nda ry	Other features
7.5YR 443 7.5YR 444 81 f 1 gr 8h vfi ss & ps - n m n - 7.5YR 443 7.5YR 443 8cl m 1 sbk 8h fi ss & ps - f c c conir 5YR 544 7.5YR 446 8cl m 2 sbk h fi s & p - f f c conir 5YR 446 75YR 446 8cl m 2 sbk h fi s & p - f f c conir 5YR 446 75YR 444 8l f 1 gr 1 gr 1 1 so & p - f f c conir 7.5YR 544 7.5YR 444 8l m 1 sbk 8h fi ss & p - f f c conir 7.5YR 544 7.5YR 446 8cl m 2 sbk h fi s & p - f f c conir 7.5YR 546 7.5YR 446 8cl m 2 sbk h fi s & p - f f c conir 7.5YR 546 7.5YR 446 8cl m 2 sbk h fi s & p - f f c conir 7.5YR 546 7.5YR 446 8cl m 2 sbk h fi s & p - f f c conir 7.5YR 546 7.5YR 446 8cl m 2 sbk h fi s & p - f f c conir 7.5YR 546 7.5YR 546 8cl m 2 sbk h fi s & p - f f c conir 7.5YR 546 7.5YR 546 8cl m 2 sbk h fi s & p - f f c conir 7.5YR 546 7.5YR 546 8cl m 2 bbk sb fi s & p - f f f c conir 7.5YR 546 7.5YR 546 8cl m 2 bbk sb fi s & p - f f f c conic 7.5YR 546 7.5YR 546 8cl m 2 bbk sb fi s & p - f f f c conic 7.5YR 546 8cl m 2 bbk sb fi s & p - f f f c conca 10YR 547 10YR 547 8cl m 2 bbk sb fi s & p - f f f c conca 10YR 547 10YR 547 8cl m 2 bbk sb fi s & p - f f f c conca 10YR 547 10YR 547 8cl m 2 bbk sb fi s & p - f f f c conca 10YR 547 10YR	no. and horizon`	Depth (m)	Dry	Moist	lexture	o o	G	T	Dry	Moist	Wet	e	Size	Qty.	Conca	size	Qty	Size	Qty.		
7.5YR 4/3 sl f 1 gr sh vf ss & ps - m - 7.5YR 4/3 52YR 3/3 scl m 1 sbk sh ff ss & ps - f c - 7.5YR 3/4 5XPR 4/6 scl m 2 sbk h ff skp - f f conir 5YR 4/6 5XPR 4/6 scl m 2 sbk h ff skp - f f conir 5YR 4/6 5XPR 4/6 scl m 2 sbk h ff skp - f f conir 75YR 4/6 5YR 4/6 scl m 1 skp h ff skp r f conir 75YR 5/4 75YR 4/6 scl m 2 sbk h ff skp r f conir 75YR 5/6 75YR 4/6 scl	1. Devar	apalli (P1)																			
7.5YR 34 5.5YR 343 scl m 1 sbk sh ff ss & ps - f c - 7.5YR 54 7.5YR 34 scl m 2 sbk h f f f c conir 5YR 346 scl m 2 sbk h ff skp - f f conir 5YR 446 scl m 2 sbk h vf skp - f f conir 5YR 446 scl m 3 sbk h vf skp - f f conir 75YR 54 5YR 446 scl m 1 sbk h rf skp - rf rf conir 75YR 54 75YR 446 scl m 1 skp h rf skp - rf rf conir 75YR 54 75YR 446 scl m	Ap	0.00-0.10	7.5YR 4/3	7.5YR 4/4	sl	J	_	£6	sh	vfr	ss & ps		ш	Ħ				၁	သ ၁	8w	
7.5YR 5/4 5YR 8/4 sel m 2 sbb sh f sc ps - f c conir 5YR 5/4 5YR 3/6 scl m 2 sbb h f f f f conir 5YR 4/6 5YR 4/6 scl m 2 sbb h f scp - f f conir 5YR 4/6 5YR 4/6 scl m 3 sbb h f scp - f f conir 7.5YR 5/4 5YR 4/4 sl m 1 gb h f scp - f f conir 7.5YR 5/4 55R 6 m 1 gb h f gb h f f f conir 7.5YR 5/4 5.5YR 4/7 scl m 2 sbb h f f f conir 7.5YR 5/6 7.5YR 4/4 scl m <td>Bw</td> <td>0.10-0.25</td> <td>7.5YR 4/3</td> <td>7.5YR 3/3</td> <td>scl</td> <td>ш</td> <td>_</td> <td>sbk</td> <td>sh</td> <td>ff</td> <td>ss & ps</td> <td></td> <td>Į.</td> <td>၁</td> <td></td> <td></td> <td></td> <td>J</td> <td>ى ى</td> <td>8w</td> <td></td>	Bw	0.10-0.25	7.5YR 4/3	7.5YR 3/3	scl	ш	_	sbk	sh	ff	ss & ps		Į.	၁				J	ى ى	8w	
SYR 5/4 5YR 3/6 scl m 2 sbk h fi skp - f f f conir SYR 4/6 scl m 2 sbk h f f f f f conir JSYR 4/6 syl scl m 2 sbk h f skp - f f conir JSYR 4/6 JSYR 4/4 sl f g h f skp - f f conir JSYR 5/4 JSYR 4/6 scl m 1 sk h f skpp - f conir JSYR 5/6 JSYR 4/6 scl m 2 sk h f skpp - f f conir JSYR 5/6 JSYR 4/7 scl m 2 skp h f skp r f conir JSYR 5/7 scl m 1 </td <td>$\operatorname{Bt}_{\mathrm{I}}$</td> <td>0.25-0.58</td> <td>7.5YR 5/4</td> <td>7.5YR 4/3</td> <td>scl</td> <td>ш</td> <td>2</td> <td>sbk</td> <td>sh</td> <td>fí</td> <td>ss & ps</td> <td></td> <td>Į.</td> <td>၁</td> <td>conir</td> <td></td> <td></td> <td>J</td> <td>ن ن</td> <td>dw</td> <td>Continuous and</td>	$\operatorname{Bt}_{\mathrm{I}}$	0.25-0.58	7.5YR 5/4	7.5YR 4/3	scl	ш	2	sbk	sh	fí	ss & ps		Į.	၁	conir			J	ن ن	dw	Continuous and
5YR 4/6 scl m 2 sbk h f f f f f conir 5YR 4/6 scl m 3 sbk h vf skp - f f f conir 7.5YR 5/4 5YR 4/4 sl f f skp h f skp - f f conir 7.5YR 5/4 7.5YR 5/4 sl m 1 skp h f skpp - f f conir 7.5YR 5/4 7.5YR 4/7 scl m 2 skp h vf skp - f f conir 7.5YR 5/6 7.5YR 4/7 scl m 2 skp h vf skp r f f conir 7.5YR 5/7 7.5YR 5/4 scl m 2 skp h vf skp r f conir 7.5YR 5/7 scl	Bt_2	0.58-0.70	5YR 5/4	5YR 3/6	scl	ш	2	sbk	h	ij	s & p		f	f	conir			J	၁	, wp	observed in
5YR 4/6 scl m 3 sbk h vfi skp - f f f conir 7.5YR 5/4 7.5YR 4/4 sl f 1 gr 1 m conir - m conir 7.5YR 5/4 7.5YR 4/4 sl m 1 sbk h f skpps - f f conir 7.5YR 5/4 7.5YR 4/3 scl m 2 sbk h f skpps - f f conir 7.5YR 5/6 7.5YR 4/7 scl m 2 sbk h rf skpp - f f conir 7.5YR 5/4 5.5YR 4/7 scl m 2 sbk h rf skpp - rf	Bt_3	0.70-0.90	5YR 4/6	75YR 4/6	scl	ш	2	sbk	h	ij	ચ		f	Ţ	conir			J	J (dw 1	subsurface horizons.
7.5YR 5/4 7.5YR 4/4 sl f 1 gr 1 l so & po - m c - 7.5YR 5/4 7.5YR 5/4 sl m 1 sbk sh fr ss & ps - f f conir 7.5YR 4/6 7.5YR 4/6 scl m 2 sbk h fi s & p - f f conir 7.5YR 4/6 7.5YR 4/6 scl m 2 sbk h fi s & p - f f f conir 7.5YR 5/6 7.5YR 4/6 scl m 2 sbk h fi s & p - f f f conir 7.5YR 5/6 7.5YR 4/3 7.5YR 5/4 scl m 2 rbk sh fi s & p - c c c conca 10 YR 5/3 10 YR 5/5 scl m 2 rbk sh fi s & p cs f f c conca 10 YR 5/3 10 YR 5/3 scl m 2 rbk h fi s & p cs f f c conca 10 YR 5/3 10 YR 5/3 scl m 2 rbk h fi s & p cs f f c conca 10 YR 5/3 scl m 2 rbk h fi s & p cs f f c conca 10 YR 5/3 scl m 2 rbk h fi s & p cs f f f conca 10 YR 5/3 scl m 2 rbk h fi s & p cs f f f conca 10 YR 5/3 scl m 2 rbk h fi s & p cs f f f conca 10 YR 5/3 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f conca 10 YR 5/4 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f f conca 10 YR 5/4 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f f conca 10 YR 5/4 10 YR 3/2 scl m 2 rbk h fi s & p cs f f f f conca 10 YR 5/4 10 YR 5/4 scl m 5 rbk h fi s & p cs f f f f conca 10 YR 5/4 10 YR 5/4 scl m 5 rbk h fi s & p cs f f f f conca 10 YR 5/4 10 YR 5/4 scl m 5 rbk h fi s & p c f f f f conca 10 YR 5/4 scl m 5 rbk h fi s & p c f f f f conca 10 YR 5/4 scl m 5 rbk h fi s & p c f f f f conca 10 YR 5/4 scl m 5 rbk h fi s & p c f f f f conca 10 YR 5/4 scl m 5 rbk h fi s & p c f f f f f conca 10 YR 5/4 scl m 5 rbk h fi s & p c f f f f f f f f f f f f f f f f f f	Bt_{4}	0.90-1.19+	5YR 4/6	5YR 4/6	scl	ш	33	sbk	h	vfi	s & p		f	Ţ	conir						
2 7.5YR 5/4 7.5YR 4/4 sl f 1 gr 1 so &po - m c - 2 7.5YR 5/4 7.5YR 5/4 5.5YR 4/6 scl m 2 sbk h f f f f conir 9 7.5YR 5/6 7.5YR 4/6 scl m 2 sbk h f skp - f f conir 9 7.5YR 5/6 7.5YR 4/7 scl m 2 sbk h f skp - f f conir 9 7.5YR 5/6 7.5YR 5/7 scl m 2 sbk h f skp - f f conir 10 7.5YR 5/3 7.5YR 5/4 scl m 1 r r r r r r r r r r r r r r r r r r r	2. Gujja	ngivalasa (P ₂																			
2 7.5YR 5/4 7.5YR 5/4 sl m 1 sbk sh ff ss &ps - m c conir 0 7.5YR 4/6 7.5YR 4/6 scl m 2 sbk h ff skp - f f f conir 0 7.5YR 5/6 7.5YR 4/6 scl m 2 sbk h vf skp - f f conir 0 7.5YR 5/6 7.5YR 5/7 scl m 1 rbk sh ff skp - f f conir 0 7.5YR 5/4 scl m 2 rbk sh ff skp - f f conca 0 10YR 5/3 10YR 5/5 scl m 2 rbk h ff skp cs f f conca 10YR 5/3 10YR 5/3 scl m 2 rbk h rb r	Ap	0.00-0.10	7.5YR 5/4	7.5YR 4/4	sl	J	_	ы	_	_	so & po		ш	၁				၁	ى ى	ws.	-
0 7.5YR 4/6 7.5YR 4/6 scl m 2 sbk h fi s & p - f f conir 0 7.5YR 5/6 7.5YR 4/6 scl m 2 sbk h ff skp - f f conir 5+ 7.5YR 5/6 7.5YR 4/7 scl m 2 sbk h vf skp - f f conir 0 7.5YR 5/3 7.5YR 5/4 scl m 1 rbk sh ff sk ps es c	Bw	0.10-0.22	7.5YR 5/4	7.5YR 5/4	sl	ш	_	sbk	sh	ft	ss & ps		Ħ	၁	conir	ΙΉ	J	f	ى ى	MS MS	Patchy and thin argillans observed
64 7.5YR 5/6 7.5YR 5/6 7.5YR 4/6 scl m 2 sbk h fi s & p - f f conir 64 7.5YR 5/6 7.5YR 4/3 scl m 2 sbk h vf skp - f f conir 9 7.5YR 5/4 scl m 1 rbk sh ff skp cs c c c c 9 10YR 5/3 10YR 5/4 scl m 2 rbk sh ff skp cs f f conca 9 10YR 5/4 scl m 2 rbk h ff skp cs f f conca 5+ 10YR 5/4 scl m 2 rbk h ff skp cs f f conca 5+ 10YR 4/2 10YR 4/2 scl m 2 rbk h rb	\mathbf{Bt}_{l}	0.22-0.40	7.5YR 4/6	7.5YR 4/3	scl	ш	7	sbk	h	ij	s & p		J.	Į.	conir	ΙΉ	J	Į.	၁	dw	in subsurface
1.5 YR 5/6 7.5 YR 4/3 scl m 2 sbk h vfi s & p - f f conir 0 7.5 YR 5/3 7.5 YR 5/4 scl m 1 rbk sh fi sc & ps cs c </td <td>Bt_2</td> <td>0.40-0.70</td> <td>7.5YR 5/6</td> <td>7.5YR 4/6</td> <td>scl</td> <td>ш</td> <td>7</td> <td>sbk</td> <td>h</td> <td>ij</td> <td>ઝ</td> <td></td> <td>J.</td> <td>Į.</td> <td>conir</td> <td>ΙΉ</td> <td>J</td> <td>Į.</td> <td>၁</td> <td>, wb</td> <td></td>	Bt_2	0.40-0.70	7.5YR 5/6	7.5YR 4/6	scl	ш	7	sbk	h	ij	ઝ		J.	Į.	conir	ΙΉ	J	Į.	၁	, wb	
0 7.5 YR 4/3 7.5 YR 3/2 scl m 1 rbk sh fir s & p - c c - c conca 0 7.5 YR 5/3 7.5 YR 5/4 scl m 2 rbk sh fi s & p es c c conca 0 10 YR 5/3 10 YR 5/5 scl m 2 rbk h fi s & p es f f conca 5+ 10 YR 4/2 10 YR 3/2 scl m 2 rbk h fi s & p es f f conca 5+ 10 YR 4/2 10 YR 3/2 scl m 2 rbk h vfi s & p ev f f conca	$\mathbf{B}\mathbf{t}_3$	0.70-0.98+	7.5YR 5/6	7.5YR 4/7	scl	ш	7	sbk	h	vfi	s & p		J.	Į.	conir	C	J	f	Ŧ		
0.00-0.10 7.5 YR 4/3 7.5 YR 5/4 scl m 1 rbk sh ff sck ps es c c c c c 0.10-0.30 7.5 YR 5/3 7.5 YR 5/4 scl m 2 rbk sh ff sc c c conca 0.30-0.50 10 YR 5/3 10 YR 4/4 scl m 2 rbk h ff sc f f conca 0.80-0.95+ 10 YR 4/2 scl m 2 rbk h vf sc f f f conca	3. Patikv	alasa (P ₃)																			
0.10-0.30 7.5 YR 5/3 7.5 YR 5/4 scl m 2 rbk sh fi sck ps cs c c conca 0.30-0.50 10 YR 5/4 10 YR 4/4 scl m 2 rbk h fi sck p cs f f conca 0.80-0.95+ 10 YR 4/2 10 YR 3/2 scl m 2 rbk h vfi sch f f f conca	Ap	0.00-0.10	7.5 YR 4/3	7.5 YR 3/2	scl	Ш	_	rbk	sh	fr	s & p		၁	၁		ΙΉ	J	၁	၁	cw	
0.30-0.50 10 YR 5/3 10 YR 5/4 scl m 2 rbk sh fi s&p es f f conca 0.50-0.80 10 YR 5/4 10 YR 4/4 scl m 2 rbk h fi s&p es f f conca 0.80-0.95+ 10 YR 4/2 10 YR 3/2 scl m 2 rbk h vfi s&p ev f f conca	Bw_1	0.10-0.30	7.5 YR 5/3	7.5 YR 5/4	scl	ш	7	rbk	sh	ij	ss & ps	es	၁	၁	conca	ഥ	J	၁	ى ى	Mg	
0.50-0.80 10 YR 5/4 10 YR 4/4 scl m 2 rbk h fi s&p es f f conca 0.80-0.95+ 10 YR 4/2 10 YR 3/2 scl m 2 rbk h vfi s&p ev f f conca	Bw_2	0.30-0.50	10 YR 5/3	10 YR 5/5	scl	ш	7	rbk	sh	ij	s & p	es	J.	Į.	conca	C	J	Į.	၁	dw	
0.80-0.95+ 10 YR 4/2 10 YR 3/2 scl m 2 rbk h vfi s & p ev f f conca	Bw_3	0.50-0.80	10 YR 5/4	10 YR 4/4	scl	ш	7	rbk	h	ij	s & p	es	J.	J.	conca	C	J	f	J (dw	
	Bw_4	0.80 - 0.95 +	10 YR 4/2	10 YR 3/2	scl	ш	2	rbk	h	vfi	s & p	ev	J.	£	conca	C	J	Į.	J		

Contd....

Profile No.		Colour	ım			Structure	ıre	J	Consistence	ıce	Efferv	Pores	sə.	Conc	Concreations	<u></u> I	Roots	ts	Bou	
and horizon`	Depth (m)	Dry	Moist	Texture	\sqrt{\dots}	G	T	Dry	Moist	Wet	escence	Size	Qty.	Conir	Size	Qty	Size	Qty.	ndary	Other features
4. Gangada (\mathbf{P}_4)	a(P ₄)																			
Ap	0.01-0.09	0.01-0.09 10YR 4/4 10YR 3/4	10YR 3/4	scl	ш	2	sbk	h	fi	vs & vp	es	m	ပ		J	J	ပ	ш	gw	
Bw_1	0.09-0.40	0.09-0.40 10YR 3/2	10YR 3/2	sc	ш	С	sbk	vh	vfi	vs & vp	es	f	၁	conca	၁	f	J	ш	gw Su	Surface cracks of 1.0 cm
Bw_2	0.40-0.62	10YR 4/4	10YR 3/4	sc	ш	С	abk	vh	vfi	vs & vp	ev	Į.	၁	conca	၁	J	J	J.	dw wb	wide upto depth of 35 cm were observed. Pressure
Bw_3	0.62-0.82	0.62-0.82 10YR 5/4	10YR 4/4	scl	ш	2	abk	vh	vfi	vs & vp	ev	f	၁	conca	၁	f	J	f	dw fa	faces observed in lower
Bw_4	0.82 - 1.02 +	0.82-1.02+ 10YR 4/4	10YR 3/5	scl	ш	2	abk	vh	vfi	vs & vp	ev	f	၁	conca	ပ	J		ı	≝ '	HZOHS.
5. Amity (P _s)	P ₅)																			
Ap	0.00-0.16	0.00-0.16 7.5YR 5/4 7.5YR 4/4	7.5YR 4/4	scl	Ш	2	sbk	sh	fr	ss & sp	,	ш	၁	,	,	ı	၁	ш	cs	
Bw_1	0.16-0.30	0.16-0.30 7.5YR 3/2 7.5YR 2/3	7.5YR 2/3	scl	ш	2	sbk	h	ij	ss & sp		m	J	conir	f	J	ш	၁	cw Pa	Patchy and thin argillans
Bw_2	0.30-0.48	7.5YR 5/4	7.5YR 4/2	scl	ш	3	sbk	h	ij	ss & sp		f	၁	conir	၁	၁	J	J	dw hc	ooserved in subsurface horizons
Bw_3	0.48-0.70	5YR 5/5	5YR 4/3	scl	ш	-	sbk	h	ij	ss & sp	,	Ŧ	၁	conir	၁	၁	J	Į.	dw	
Bw_4	0.70 - 0.90 +	5YR 5/6	5YR 4/4	sl	ш	-	sbk	h	ij	ss & sp		f	J	conir	၁	၁	ш	f	,	
6. Maddivalasa (P ₆)	$valasa(P_6)$																			
Ap	0.00-0.13	10YR 5/3	10YR 4/3	scl	ш	2	sbk	h	ij	vs& vp		Ш	၁	,	,	1	၁	၁	gw Su	Surface cracks more than
Bw	0.13-0.32	10YR 4/5	10YR 3/3	၁	ш	3	abk	vh	vfi	vs & vp	,	Ŧ	၁	ı	ı	ı	၁	Į.	dn wg	2 cm wide and extended upto more than 50 cm.
Bss_1	0.32-0.55	10YR 4/3	10YR 3/3	၁	ш	3	abk	vh	vfi	vs & vp	,	Ŧ	J	ı	ı	ı	၁	ပ	dw Pr	Prominent intersecting slickensides and wedge
Bss_2	0.55-0.74	10YR 3/2	10YR 2/3	၁	ш	8	abk	vh	vfi	vs & vp	1	f	J	ı			၁	၁	dw sh	shaped aggregates and pressure faces observed
Bss_3	0.74-1.15+	0.74-1.15+ 10YR 3/2 10YR 2/2	10YR 2/2	၁	Ш	3	abk	vh	vfi	vs & vp	1	f	f			1	၁	၁	I.E '	in lower horizons

: sl – sandy loam; scl- sandy clay loam; cl- clay loam; sc sandy clay; c-clay
: S-size: f- fine; m-medium; c- coarse; G-grade 1-weak; 3- strong; T-type gr- granular; sbk-sub angular blocky; abk-angular blocky;
: Dry: l- loose, sh- slightly hard; h- hard; vh-veryhard; Moist: s-soff; fi-friable fi-firm; vfi-very firm; Wet: sopo – non sticky& non plastic; ss p- slightly sticky & slightly plastic; sp-sticky& plastic: vsvp-very sticky & very plastic
: e-slight effervescence; es-strong effervescence ev- violent effervescence
: S- size: vf-very fine; f-fine; m-medium; c-coarse; Qty: vf-very few: f-few; c-common; m-many;
: c-clear; s-smooth; d-diffuse; g-gradual; w-wavy Structure Texture

Consistence

Effervescence : Pores and roots : Boundary :

18 Himabindu *et.al*

Physico-chemical properties

The clay content in the soil ranged from 12.6 to 45.2 per cent (Table 3) and increased with depth, which might be due to translocation of clay from surface to sub-surface horizons with percolating water in coarse textured soils (P_1 , P_2 , P_3 , P_5) and intense chemical weathering in sub-surface layers of fine textured soils (P_4 , P_6). These findings are in accordance with the results

reported by Sreedharreddy and Naidu (2016). The sand content in different horizons of the pedons varied from 37.3 to 76.5 per cent. In general, the sand content decreased with depth except in P_3 , wherein it did not follow any trend of distribution with depth. Pedon P_1 , P_2 , P_3 had relatively higher sand content owing to intense physical weathering. The silt content varied from 10.9 to 18.9 per cent and it showed irregular trend of distribution with depth.

Table 3. Physical and physico-chemical properties of soils

Profile No. &	Depth	Gravel	Sand	Silt	Clay	pН	E.C (dSm ⁻¹)	Organic carbon	CaCO ₃	CEC	E	xchangea	ble bases	i.	Base saturation
horizon	(m)	(%)	(%)	(%)	(%)	þm	(usiii)	(%)	(%)	CEC	Ca ²⁺	Mg ²⁺	Na ⁺	K ⁺	_saturation (%)
	. ,							(/0)	_			(p ⁺) kg ⁻¹ s			_ (///
P ₁ : Devar	analli														
Ap	0.00-0.10	4.5	62.2	18.6	19.2	6.23	0.13	0.534	_	13.50	3.96	1.02	0.28	0.04	39.26
Bw	0.10-0.25	3.1	58.0	17.5	24.5	6.61	0.17	0.301	_	15.40	5.85	0.67	0.35	0.07	45.06
Bt1	0.25-0.58	4.0	53.5	17.5	29.0	7.34	0.17	0.231	_	17.00	6.01	1.05	0.63	0.11	45.88
Bt2	0.58-0.70	2.3	56.0	16.0	28.0	7.41	0.21	0.215	-	15.40	5.90	1.00	0.24	0.09	46.95
Bt3	0.70-0.90	2.3	60.5	15.5	24.0	7.35	0.23	0.220	_	14.20	5.76	0.52	0.22	0.08	46.34
Bt4	0.90-1.19+	3.0	58.0	17.0	25.0	7.48	0.23	0.205	_	14.20	5.72	0.60	0.21	0.10	46.69
P ₂ : Gujja	ngivalasa														
Ар	0.00-0.10	5.0	76.5	10.9	12.6	4.87	0.11	0.376	_	6.40	0.88	0.22	0.10	0.06	23.33
A2	0.10-0.22	5.1	68.0	14.8	17.2	5.43	0.13	0.256	_	7.10	1.25	0.36	0.13	0.08	25.63
Bt1	0.22-0.40	6.9	69.1	10.4	20.5	5.51	0.15	0.250	_	9.63	1.75	0.45	0.11	0.05	24.51
Bt2	0.40-0.70	6.9	67.8	11.0	21.2	5.96	0.20	0.135	_	8.15	1.57	0.42	0.10	0.06	26.38
Bt3	0.70-0.98+	19.1	68.0	11.5	20.5	5.50	0.26	0.123	_	8.15	1.72	0.48	0.14	0.05	29.33
P ₃ : Patika	ıvalasa														
Ap	0.00-0.10	5.43	61.3	14.4	24.3	7.23	0.19	0.330	1.3	15.30	8.35	1.05	0.25	0.10	63.73
Bw1	0.10-0.30	5.64	60.5	13.0	26.5	7.48	0.20	0.226	3.4	17.20	8.86	1.01	0.72	0.12	62.27
Bw2	0.30-0.50	5.13	58.2	16.1	25.7	7.54	0.22	0.196	3.0	14.20	7.36	1.31	0.28	0.09	63.66
Bw3	0.50-0.80	6.01	59.9	13.6	26.5	7.91	0.23	0.180	7.0	11.70	6.90	1.22	0.33	0.06	72.74
Bw4	0.80-0.95+	8.03	63.2	12.5	24.3	8.28	0.31	0.135	9.5	13.50	8.23	1.38	0.41	0.03	74.44
P ₄ : Ganga	ada														
Ар	0.00-0.09	5.1	55.2	15.8	29.1	7.88	0.39	0.450	3.15	27.35	20.80	2.18	0.71	0.13	87.09
Bw1	0.09-0.40	5.6	51.0	14.1	34.9	8.04	0.43	0.316	6.30	31.80	24.70	2.24	0.80	0.11	87.58
Bw2	0.40-0.62	6.3	48.1	15.0	36.9	8.26	0.44	0.291	7.10	29.50	20.30	3.82	1.17	0.09	86.03
Bw3	0.62-0.82	7.1	53.4	13.2	33.4	8.50	0.47	0.253	9.8	30.10	20.20	3.50	1.19	0.13	83.12
Bw4	0.8202+	21.5	54.3	14.1	31.6	8.71	0.58	0.213	13.8	28.80	20.50	3.61	1.18	0.15	88.33
P ₅ : Amiti															
Ap	0.00-0.16	5.1	65.3	13.7	21.0	6.53	0.24	0.520		16.80	4.83	1.12	0.35	0.14	38.33
A2	0.16-0.30	5.6	63.2	13.6	23.2	7.20	0.26	0.376	-	14.90	4.83	1.61	0.32	0.17	44.60
Bw2	0.30-0.48	6.3	58.1	16.6	25.3	7.61	0.31	0.226	_	14.90	4.10	1.50	0.48	0.09	42.40
Bw3	0.48-0.70	7.1	56.4	18.4	25.2	7.14	0.39	0.110	1.1	16.10	4.10	1.80	0.52	0.08	40.37
Bw4	0.70-0.90+	26.3	61.4	15.0	23.6	7.10	0.45	0.110	1.35	15.25	4.28	1.48	0.16	0.02	39.61
P ₆ : Madd	ivalasa														
Ap	0.00-0.13	0.8	43.0	18.9	38.1	7.80	0.48	0.619	-	29.10	18.90	2.18	0.50	0.10	74.50
Bw	0.13-0.32	0.8	41.5	17.0	41.5	8.16	0.56	0.302	1.1	32.50	20.10	3.04	1.32	0.18	75.82
Bss1	0.32-0.55	0.4	39.0	17.0	44.0	8.12	0.45	0.231	1.1	32.50	20.00	3.35	1.25	0.12	76.06
Bss2	0.55-0.74	0.5	39.0	18.9	42.1	8.04	0.53	0.110	1.5	28.90	19.80	3.25	1.15	0.12	84.15
Bss3	0.74-1.15+	1.1	37.3	17.5	45.2	7.91	0.60	0.110	2.9	31.10	21.60	3.46	1.05	0.10	84.28

Pedons P₃, P₄, P₆ were slightly alkaline to alkaline; P₂ had acid pH while P₁ and P₅ were neutral. The pH of these pedons increased with depth which could be due to continuous removal of basic cations by crop plants and/or leaching of basic cations to deeper layers along with percolating water and as release of organic acids in surface layers during decomposition of organic matter. The pH of P3, P4 and P6 are in consonance with CaCO₃ Content (Visalakshidevi et al. 2015). These pedons were non-saline. The organic carbon in different horizons of the pedons ranged from 0.11 to 0.62 per cent and decreased with depth, which could be due to enriched surface horizon with crop residue, left over roots mass and farm yard manure application. Calcium carbonate ranged from 1.3 to 9.5 per cent in P₃, 3.15 to 13.8 in P₄ and in general increased with depth in all the pedons. The increase in calcium carbonate content could be attributed to the leaching of bicarbonate from upper layer during rainy season and their subsequent precipitation as carbonate in the lower layer (Leelavathi et al. 2009). The cation exchange capacity varied from 5.40 to 32.5 cmol (p⁺) kg⁻¹ soil and it was irregularly distributed with depth. Pedons P₄ and P₆ recorded higher CEC due to high clay content and expanding nature of The exchangeable complex of the soils was dominated by Ca⁺². Exchangeable sodium was relatively higher in P₄ and P₆

Soil classification

Pedons P_3 , P_4 and P_5 with cambic subsurface diagnostic horizon were classified as Inceptisols at order level and Ustepts at suborder level owing to ustic soil moisture regime. At greatgroup level these three pedons were classified as Haplustepts. At subgroup level pedon P_3 and P_5 were classified as Typic Haplustepts due to absence of lithic contact within 50 cm from surface. However, pedon P_4 was classified at subgroup level as

Vertic Haplustepts due to presence of surface cracks of more than 5.0 mm wide within 125 cm and presence of wedge shaped aggregates in sub surface.

Pedon P₁ was classified as Alfisol at order level due to the presence of argillic sub-surface diagnostic horizon with more than 35 per cent base saturation. At suborder level it was placed under Ustalf owing to Ustic soil moisture regime. At greatgroup level, it was classified as Haplustalf. At subgroup level the pedon was classified as Typic Haplustalf.

Pedon P₂ was grouped to the order Ultisol because of presence of argillic sub-surface diagnostic horizon with less than 35 per cent base saturation and low active clay (low ratio of CEC/clay). At suborder level these soils were placed in Ustults due to ustic soil moisture regime. At greatgroup, this pedon was grouped as Haplustult and Typic Haplustult at sub group level with fine-loamy textural family class

Pedon P₆ was classified as Vertisol at order level because of more than 30 per cent clay, more than 25 cm thick slickenside zone with in 100 cm. At greatgroup level, the pedon was grouped as Haplusterts since it does not have properties of salic, gypsic or calcic horizon with in 100 cm depth. At sub group level it was classified as Chromic Haplustert because of the colour value moist were 4 in surface horizon. At family level the pedon was placed under fine textural family class with smectitic mineralogy.

Land capability classification

The grouping of soils into capability classes and subclasses is done mainly based on the severity of limitations *viz.*, erosion risk, wetness limitation, soil limitation, slope and climate limitation. These limitations can be improved by the addition of organic manures, addition of tank silt, providing drainage facilities, soil fertility management, adopting irrigation methods *etc*.

Table 4. Land capability classification and interpretation of soils for their sustainable use

Profile No.	Land capability class	Description and present land use	Potentialities	Major limitations	Suggested land use
\mathbf{P}_1	IIs	Good cultivable land for sustainable agriculture. Presently under cultivation irrigated rice followed by maize pulses	Good internal drainage, relatively good water an d nutrient retention capacity good soil depth, neutral soil pH, suitable c limate. Options for different cropping systems,	Gentle slope, moderate erosion hazard, low organic carbon status.	Suitable climate for double cropping including legume in rotation under INM Maize, groundnut, mesta, red gram, sugarcane may be grown. Erosion control measures may be adopted.
P_2	IVse	Fairly good cultivable land for sustainable agriculture. Presently under mango orchard	Good internal drainage, go od soil depth, suitable climate	Coarse texture, excessive drainage, gentle slope, low CEC, low base status, low water holding capacity, low organic matter and poor nutrient status, acidic soil pH, moderate erosion.	Addition of tank silt (pond mud) is recommended, application of lime based on lime re quirement value suitable soil and water management practices could be followed. Although climate suits for double cropping, agricultural crops like groundhut, maize, mesta and fruit crops like m ango, guava, and cashew can be grown under specific soil and water management practices.
P_3	IIIse	Moderately good cultivable land for sust anable agriculture. Presently under r ice fol lowed by maize/ pulses	Relatively good water and nutrient retention capacity good soil depth, suitable climate, moderate internal drainage.	Gentle slope, moderate erosion, low organic carbon. Slight to moderately alkaline pH, nutrient imbalance.	Climate suitable for double cropping i ncluding l egume in rotation under normal soil and water manag ement practices. Suitable crops are sugarcane, Rice, maize can be grown under INM
P_4	IVsw	Fairly good cultivable land for sustainable agriculture. Presently under Rice followed by pulses	High CEC, high water and nutrient retention, g ood base satu ration, suitable climate	Poor internal drainage, low organic carbon m oderately alkaline pH, nutrient imbalance, wetness limitation	Addition of organic manures, green manuring soil test based fertiliser management for phosphorous and micronutrient s. Double cropping involving rice –pulses or rice- maize can be adopted.
$_{5}$	IIIs	Moderately good cultivable land for sustainable agriculture. Presently under Rice followed by maize/ pulses	Relatively good water an d nutrient retention capacity, good soil depth, suitable climate, good, internal drainage.	Poor drainage, low organic matter and water holding capacity	Climate suitable for double cropping including legume in rotation with normal soil a nd water management practic es. Suitable crops are sugarcane, Rice, maize and pulses
${\rm P}_{6}$	IVsw	Fairly good cultivable land for sustainable agriculture. Presently Rice followed by Maize is grown.	High CEC, high water and nutrient retention, Good base satur ation, suitable climate	Very poor internal drai nage, low organic carbon slight alkaline nutrient imbalance, wetness	Addition of organic and green manuring soil test based fertiliser management, for phosphorous and micronutrients. Double cropping involving rice –pulses or rice- maize can be grown.

Note: s- soil limitation, w- wetness limitation, e- erosion limitation.

Acknowledgement

The authors thank Acahrya N.G. Ranga Agricultural University for providing financial support and infrastructural facilities for the study.

References

- AIS&LUS (1970). Soil Survey Manual, All India Soil and Land Use Survey organisation, IARI, New Delhi, pp.1-63
- Geethasireesha, P.V., and Naidu, M.V.S. (2013). Studies on genesis, characterization, and classification of soils in semi-arid agro-ecological region: A case study in Banaganapalle mandal of Kurnool district in Andhra Pradesh. *Journal of the Indian Society of Soil Science* **61**, 167-178.
- Kanwar, J.S. (2004). Address by the guest of honour, 69th annual convention of the Indian Society of Soil Science held at the Acharya N.G Ranga Agricultural University, Hyderabad. *Journal of the Indian Society of Soil Science* **52**, 295-296.

- Klingebiel A.A and Montgomery P.R. (1966). Land Capability Classification, Agriculture Handbook 210, Soil Conservation Service, USDA. Washington, D.C.
- Leelavathi, G.P., Naidu, M.V.S., Ramavatharam, N., and Karunasagar, G. (2009). Studies on genesis, classification and evaluation of soils for sustainable land use planning in Yerpedu mandal of Chittoor district, Andhra Pradesh. *Journal of the Indian Society of Soil Science* 57, 109-120.
- Soil Survey Staff(2014). *Keys to soil Taxonomy*, 12th Edition. (USDA/NRCS. Washington, D.C.)
- Sreedharreddy, K., and Naidu, M.V.S. (2016). Characterization and classification of soils in semi-arid region of Chennur mandal in Kadapa district, Andhra Pradesh. *Journal of the Indian Society of Soil Science* **64**, 207-217.
- Vishalakshidevi, P.A., Naidu, M.V.S., and Ramakrishnarao, A. (2015). Characterization and classification of sugarcane growing soils in central and eastern mandals of Chittor district in Andhra Pradesh. *Current Advances in Agricultural Sciences* 7, 41-48.

Received: December, 2017 Accepted: April, 2018