Influence of calcium on distribution of different forms of iron in Vertisols

RESHMI SARKAR², B. BASAVARAJ¹ AND SANDIPTA KAR²

- ¹ Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Dharwad, 580 005, India
- ² Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302, India

Abstract: Depth-wise distribution of free CaCO₃, water soluble Ca, exchangeable Ca, Fe oxides, water soluble Fe, DTPA-Fe and bicarbonate ions in different profiles from Dharwad, Hebballi and Hebsur of North Karnataka was studied. Free CaCO₃, exchangeable Ca and water soluble Ca were found in maximum concentration at 60-100 cm depth in all the three profiles, which consequently increased the concentration of bicarbonate ion in subsurface soils than in surface soils. DTPA-Fe and water soluble Fe was concentrated in the surface layers and was in reduced concentration at deeper soil layers, whereas, both the Fe oxides were accumulated in the subsurface layers. Correlation study indicated a positive significant correlation of water soluble Ca and exchangeable Ca with CaCO₃. A positive significant correlation was found between oxalate extractable iron and CBD extractable iron oxide. The forms of Ca, free CaCO₃ and bicarbonate ion did not show any negative effect on presence of the Fe oxides. However, DTPA-Fe and water soluble Fe showed negative correlation with bicarbonate ion.

Additional Key Words: Water soluble Ca and Fe, calcareous soil, free $CaCO_3$, DTPA-Fe, bicarbonate ion, distribution of Fe-oxides.

Introduction

Iron is not readily available to plants mainly due to high soil pH, calcareousness, low organic matter content and erosion (Hansen et al. 2003). Vertisols of southern India are high in soil pH and calcareous, which results in iron deficiency in these soils. High calcium carbonate in Vertisols leads to high concentration of bicarbonate ions in soil and this interferes with iron uptake by plants (White and Robson 1989). Different soil processes viz. calcification, translocation and hydrolysis of lime, coating, precipitation and crystallization of iron oxides and hydroxylation and chelation of iron are mainly responsible for movement, solubility and availability of calcium and iron in calcareous soil. Through the present study an attempt has been made to assess the depth-wise distribution of different forms of iron, calcium and bicarbonate ion in calcareous soils of North Karnataka and their relationships among themselves.

Materials and Methods

Soil samples were collected at 4 depths viz. 0-15, 15-30, 30-60 and 60-100 cm from profiles of Dharwad and Hebballi (Typic Calciusterts) and Hebsur (Typic Pellusterts) in North Karnataka.

The soil samples were air-dried, ground and passed through 2 mm sieve and used for analysis. Soil pH and electrical conductivity were determined in 1: 2.5 (soil: water) suspension using pH meter and conductivity meter respectively (Jackson 1967). Organic carbon was estimated by Wakley and Black wet oxidation method (Jackson 1967). The ammonium acetate pH 7.0 method was used to determine the CEC of soils (Chapman 1965). Free calcium carbonate was determined by acid dilution method (Piper 1966). Exchangeable Calcium was extracted with KCl-TEA buffer solution and estimated by Versenate method (Jackson 1967). Water soluble calcium was extracted with double distilled

water in 1:1 (soil: water) suspension and determined by Versenate method (Black 1965). Carbonate and bicarbonate was estimated by titration of soil extract (1:2.5, soil: water) as per method described by Jackson (1967). Oxalate extractable iron oxide was extracted by oxalate reagent (Miller et. al. 1986) and citrate bicarbonate dithionite (CBD) method was followed to extract free iron oxide (Mehra and Jackson 1960). Soil and double distilled water in a ratio of 1:40 were shaken for 16 hours to extract water soluble Fe (Miller et. al. 1986). The method developed by Lindsay and Norvell (1978) was followed to determine the DTPA extractable iron. Both the Fe oxides, water soluble Fe and DTPA-Fe were estimated by atomic absorption spectrophotometer. MSTAT-C software was used for correlation analysis.

Results and Discussion

The important physical and chemical properties of soils have been presented in Table 1. The concentration of free CaCO₃ and bicarbonate ion increased with depth in Hebballi pedon but no definite trend was found in other pedons (Table 2). The higher concentration of free CaCO₃ in 60-100 cm layer might be due to deposition of CaCO₃ through the process of downward movement and it was also associated with higher concentration of bicarbonate ion in presence of more moisture. Rao *et al.* (1993) also found a positive correlation (r = 0.96) between soil water and

Table 1. Physical and chemical properties of soils

concentration of HCO_3 ions. No definite trend in distribution of WS-Ca (water soluble Ca) was found in these pedons, whereas, Ex-Ca (exchangeable Ca) increased with depth in these pedons. The presence of more Ex-Ca in subsurface layers might be attributed to higher clay content (r = 0.74°). Similar findings were also reported by Mengel and Kirkby (1996). The concentration of Ex-Ca, WS-Ca and free CaCO₃ were high in 60-90 cm layer of these pedons.

The depth-wise distribution of DTPA-Fe indicated that DTPA-Fe decreased with depth of soil at Hebballi, whereas it did not follow any definite trend in other profiles. The higher concentration of DTPA-Fe in surface layer than subsurface ones was mainly due to higher content of organic matter in the surface layer (Katyal and Sharma 1991).

The concentration of WS-Fe (water soluble Fe) was relatively low in subsurface layers than the surface ones (Table 2) which might be due to the presence of more clay and less organic matters in the subsurface layer. Yerriswamy *et al.* (1995) also found highly significant negative correlation between WS-Fe and clay and positive correlation with organic matter.

The concentration of oxalate extractable Fe oxide (Fe $_{\rm o}$) increased with depth in these pedons (Table 2). Park and Burt (1999) also reported positive correlation between Fe $_{\rm o}$ and depth of soils. There was no definite trend of distribution for CBD-extractable Fe oxide (Fe $_{\rm c}$) at Hebballi and Hebsur pedons, but

•						
	Depth (cm)	pН	E.C. (dSm ⁻¹)	O.C. (%)	Clay content (%)	sCEC (cmol kg ⁻¹)
Dharwad	0-15	6.70	0.43	0.6	29.6	37.2
	15-30	7.19	0.54	0.51	34.2	39.6
	30-60	7.69	0.62	0.48	35.8	41.1
	60-100	7.33	0.55	0.36	38.7	44.5
Hebballi	0-15	7.72	0.56	0.6	65.0	39.5
	15-30	7.87	0.50	0.57	69.1	40.1
	30-60	7.83	0.68	0.51	71.1	41.5
	60-100	7.01	0.72	0.45	75.2	44.7
Hebsur	0-15	8.96	0.68	0.6	62.8	43.5
	15-30	8.96	0.65	0.54	66.1	44.2
	30-60	8.84	0.66	0.48	68.2	48.4
	60-100	8.78	0.66	0.39	70.0	51.8

Table 2. Distribution of free CaCO₃, bicarbonate ions and exchangeable-, water soluble- and oxide forms of calcium and iron

	Depth (cm)	Free CaCO ₃ (%)	Bicarbonate in solution (mg kg ⁻¹)	Exchangeable Ca (cmol kg ⁻¹)	Water Soluble Ca	DTPA- Fe (mg kg ⁻¹)	Water Soluble Fe	Fe _o Oxide* (mg kg ⁻¹)	Fe _c Oxide** (mg kg ⁻¹)	
					(mg kg^{-1})		(mg kg ⁻¹)			
Dharwad	0-15	4	152.5	24.6	226.7	5.2	0.76	1095.8	175.6	
	15-30	2	305	27	266.7	2.67	0.68	1157.8	177	
	30-60	2	305	27.6	260	1.75	. 0.68	1188.2	179.4	
	60-100	9	305	28.4	400	2.12	0.44	1434	210.6	
Hebballi	0-15	2	457.5	39	70	1.64	0.48	789.8	191.8	
	15-30	3	610	39	40	1.06	0.44	907	153.6	
	30-60	3.5	610	39.2	60	1.03	0.46	914.8	209.2	
	60-100	5.5	762.5	45.8	150	0.3	0.46	1072.8	319	
Hebsur	0-15	16.5	305	28.2	90	2.35	0.36	479.6	99.7	
	15-30	13.5	762	26.6	50	0.45	0.22	344.2	76.1	
	30-60	13	762	30.6	40	0.49	0.26	678.4	98.3	
	60-100	17.5	610	42.6	120	1.02	0.24	1222	122.7	

^{*} Fe_oOxide = Oxalate extracted Fe oxide; ** Fe_OOxide = CBD extractable Fe oxide

Table 3. Coefficients of correlation among free CaCO₃, HCO₃ and different forms of Ca and Fe in different pedons

	Free CaCO ₃ (%)	Exchangeable Ca (c.mol kg ⁻¹)	Water Soluble Ca (mg kg ⁻¹)	HCO ₃ in solution (mg kg ⁻¹)	Oxalate extracted Fe oxide (mg kg ⁻¹)	CBD extracted Fe oxide (mg kg ⁻¹)	Water Soluble Fe (mg kg ⁻¹)
Exchangeable Ca (c.mol kg ⁻¹)	-0.05						
Water Soluble Ca (mg kg-1)	-0.25	-0.42					
HCO ₃ - in solution (mg kg ⁻¹)	0.30	0.58**	-0.67*				
Oxalate extracted Fe oxide (mg kg ⁻¹)	-0.37	0.14	0.77**	-0.41			
CBD extracted Fe oxide (mg kg ⁻¹)	-0.61**	0.48	0.38	-0.05	0.58*		
Water Soluble Fe (mg kg-1)	-0.79**	-0.32	0.56	-0.73**	0.51	0.47	
DTPA-Fe (mg kg ⁻¹)	-0.27	-0.57	0.50	-0.89**	0.29	0.01	0.72**

it increased with depth at Dharwad. The amount of Fe_c oxide was more at 60 - 100 cm depth in all the pedons. This might be due to increase in accumulation of precipitated iron oxide in deeper soil layer, which crystallized to CBD extractable iron oxide in the later stages (Thakur *et al.* 1995). The depth-wise distribution of Fe_c and Fe_c indicated that these were present in more concentration at deeper layer (60-90 cm).

The correlation of different forms of Ca and HCO, ion indicated that free CaCO, was positively correlated with WS-Ca and Ex-Ca in these pedons. However, the relationship between free CaCO, with HCO, ion was stronger in Hebballi and Hebsur than in Dharwad. The combined correlation of different forms of Ca and HCO, ion in these pedons indicated positive and negative relationships of HCO, ion respectively with Ex-Ca and WS-Ca (Table 3). The Fe, and Fe, were positively correlated between themselves and also with WS-Ca, EX-Ca and Free CaCO, in these pedons. Barbara et al. (2000) also reported highly significant positive correlation between Fe and Fe oxide. However, combined correlation indicated positive correlation of Fe with WS-Ca and negative correlation of Fe with free CaCO₃. There were no significant relationships of WS-Fe with free CaCO3, Ex-Ca and WS-Ca in Hebballi and Hebsur but strongly negative correlation of WS-Fe with all the forms of Ca was found in the profile of Dharwad. This might be due to the presence of WS-Fe in minute fraction mostly in the highly calcareous soils (Yerriswamy et al. 1995). DTPA-Fe was negatively correlated with Ex-Ca. Both WS-Fe and DTPA-Fe were present in minimum concentration at 60-90 cm depth, whereas HCO, ion was in highest concentration. There was highly significant negative correlation of WS-Fe and DTPA-Fe with HCO, ion in all the pedons, which clearly demonstrated the prominent effect of HCO, ion in reducing the concentration of available forms of Fe in calcareous soils.

References

Barbara J. Cade-Menun, Shannon M. Berch, Caroline M. Preston, and L.M. Lavkulich (2000). Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types. *Canadian Journal of Forest Research* 30, 1714-1725.

- Black, C. A. (1965) Methods of Soil Analysis, Part II, Agronomy Monograph No. 9, American Society of Agronomy, Madison, Wisconsin.
- Chapman, H. D. (1965) Cation-exchange capacity. In:
 C. A. Black (ed.) Methods of soil analysis Chemical and microbiological properties. Agronomy Monograph No. 9, American Society of Agronomy, Madison, Wisconsin, 891-901.
- Hansen, N. C., Schmitt, M. A., Anderson, J. E. and Strock, J. S. (2003). Iron Deficiency of Soybean in the Upper Midwest and Associated Soil Properties. Journal of American Society of Soil Science 95, 1595-1601.
- Jackson, M. L. (1967) Soil Chemical Analysis, Prentice Hall of India Pvt. Ltd.
- Katyal, J. C. and Sharma, B. D. (1991). DTPA-extractable and total Zn, Cu, Mn and Fe in Indian soils and their association with some soil properties. *Geoderma* **49**, 165-179.
- Lindsay, W. L. and Norvell, W. A. (1978). Development of DTPA soil test for Zn, Fe, Mn and Cu. *Journal of American Society of Soil Science* **42**, 421-428.
- Mehra, O. P. and Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate-system buffered with sodium bicarbonate. *Clays and Clay Minerals* 7, 317-327.
- Mengel, K and Kirkby, E. A. (1996). Principles of Plant Nutrition, Fourth Edition, Panima Publishing Corporation.
- Miller, W. P., D. C. Martens and L. W. Zelazny, 1986. Effect of sequence in extraction of trace metals from soils. *Journal of American Society of Soil Science* **50**, 598-601.
- Park, S. J. and Burt, T. P. (1999). Identification of through flow using the distribution of secondary iron oxides in soils. *Geoderma* **93**, 61-84.
- Piper, C. S. (1966) Soil and Plant Analysis, Hani Publishers, Bombay.

- Rao, N. S., Ramavatharam, N., Rao, M. S. and Reddy, K. S. (1993). Lime induced iron chlorosis in groundnut. Journal of Indian Society of Soil Science 41, 393-395
- Thakur, D. S., Dubey, D. D., Sharma, O. P. and Sharma, R. A. (1995) Physico-chemical properties and forms of iron in two Usterts of Central penincular India. *Crop Research* 9, 252-257.
- White, P. F. and Robson, A. D. (1989). Poor soil aeration or excess soil CaCO₃ induces Fe deficiency in lupins. *Australian Journal of Agricultural Research* **41**, 75-84.
- Yerriswamy, R. M., Vasuki, N. Manjunathaiah, H. M. and Styanarayana, T. (1995) Forms of iron and their distributions in some vertisols of Karnataka. *Journal of Indian Society of Soil Science* 43, 371-374.

Received February 2005; Accepted April 2006