Distribution of DTPA extractable micronutrients in soils of Telangana, Andhra Pradesh

P.L.A.SATYAVATHI AND M.SURYANARAYAN REDDY¹

National Bureau of Soil Survey and Land Use Planning, Nagpur 440033, India

¹ Acharya N,G,Ranga Agricultural University, Hyderabad 500030, India

Abstract: Fifty four soil samples from ten pedons of Telangana region, Andhra Pradesh were studied for vertical distribution of DTPA extractable Zn, Cu, Fe and Mn and their relationship with some soil properties. Soil pH, calcium carbonate, organic carbon and particle-size fractions had strong influence on the distribution of these micronutrients. The content of micronutrient increased with the increase in organic carbon and decreased with increase in pH and CaCO₃. There was no definite trend for the distribution of these micronutrients with respect to depth. As per critical limit prescribed for Zn and Fe, 44 and 20 per cent of the soils could be rated as deficient in available zinc and iron respectively. Copper and manganese were found to be adequate.

Additional Key words: DTPA extractable cations, black soils, critical limit

Introduction

The inherent capacity of soils to supply the nutrients from lower horizons, knowledge of vertical distribution of micronutrient cations in soils is necessary Studies were conducted by different researchers (Dhane and Shukla1995, Chattopadhyay et al. 1996; Jagdish Prasad and Gajbhiye 1999; Sharma and Gupta 2001)to understand the content and distribution of the micronutrient cations in different soils and their relationship with soil properties. However, information in this

regard for the soils of Telangana, Andhra Pradesh is scanty and therefore, an attempt has been made to assess the micronutrient status in these soils and their relationship with some important soil properties.

Materials and methods

The study area is covered by igneous(pink and grey granites and basalt) and metamorphic(granite gneiss and horn-blende schist) rocks. North western plateau and interior rugged plains form the Telangana region in Andhra Pradesh. Climatically Northern Telangana zone falls

under semi-arid(moist) tropics with an annual rainfall of around 1000 mm, whereas Southern Telangana zone falls under semi-arid (dry) tropics with an annual rainfall of around 740 mm. The moisture regime in the study area is *ustic* and soil temperature class is *isohyperthermic*. The crops grown in the study area are sorghum, rice, maize, cotton, red gram and pearl millet.

Horizon-wise soil samples were collected from the studied pedons. The samples were analyzed for pH, OC, CaCO₃ and particle-size distribution following standard procedures. The available micronutrient cations were extracted with AB-DTPA solution and determined with Inductively Coupled Plasma (Soltanpour *et al.* 1979). Simple correlations were calculated between DTPA-extractable micronutrient cations and soil properties.

Results and discussion

In general, the soils were alkaline and pH ranged from 7.2 to 9.2. Organic carbon content was low (0.06-1.14 %) and decreased with depth. Soils are calcareous and calcium carbonate content varied from 0.2 to 24.9 % in different horizons (Table 1). The soils were gravelly clay to clay in texture with clay content ranged from 30.9 to 78.0%. In general, higher content of micronutrients were found in surface layers might be due to their regular addition through plant residues, organic manure and fertilizers. There was no definite trend of distribution for micronutrients through depth (Table 1).

Zinc

DTPA-extractable zinc in the soils varied from 0.22 to 1.88 mg kg-1. As per the critical limit of 0.6 mg kg-1 (Katyal 1985), 24 samples are deficient in zinc. Zinc deficiency was not observed in P4 and in P10, whereas soil samples of pedon 6, 7 and 9 are appeared to be deficient in Zinc. Zinc deficiency was noticed after 50 cm, 170 cm and 100 cm in P8, P2 and other pedons respectively. Lower content of zinc in black soils is due to its fixation by clay (Manohar 1974) or due to high soil pH values which have resulted in the formation of insoluble compounds of zinc (Tandon 1995). Available Zn content is significantly and negatively correlated (r=-0.43**) with calcium carbonate. Soil pH, sand and silt also had negative correlation but organic carbon and clay had positive influence on DTPA-Zn.

Copper

DTPA extractable Cu content in the soils ranged from 0.26 to 2.0 mg kg⁻¹ with a mean value of 1.02 mg kg⁻¹. Considering 0.2 mg kg⁻¹ as critical limit for Cu for normal plant growth (Katyal and Randhawa 1983), the soils are rated adequate in available Cu. Soil pH and CaCO₃ content have significant negative correlation (r= -0.45**and -0.42** respectively) with Cu but organic carbon (r= 0.58**) and clay (r= 0.32*) had significant and positive correlation with Cu. These findings are in agreement with Dhane and Shukla (1995) and Chattopadhyay *et al.* (1996).

Table 1. Some Physical and chemical properties of the soils and DTPA-extractable cations

Location	Horizon	Depth (cm)	pH (1:2.5) soil : water	O.C. (g kg¹)	CaCO ₃ (g kg ⁻¹)	Particle-size distribution			DTPA-extractable cations			
						Sand	Silt	Clay	Zn	Cu	Fe	Mn
							%			mg !	— mg kg ⁻¹ ——	
			P1: Very-f	ine, smectiti	c, isohyperthe	rmic Typic l	Haplustert					
Jagtial	Ap	0-35	7.2	6.0	24	19.8	11.4	68.8	1.09	1.41	11	24
Mandal : Jagtial	Bw	35-64	7.7	5.0	22	22.1	8.8	69.1	0.98	1.48	15	26
Dt. Karimnagar	Bss	64-105	7.8	4.8	35	24.5	5.1	70.4	0.70	1,42	14	15
	BC	105-154	7.9	4.5	82	38.0	6.7	55.3	0.46	0.78	7	23
	Crk	154-200		Weath	ered granite wi	th calcretes						
			P2: Fine		isohypertherm		plustert					
Rudrur	Ap	0-31	7.9	4.5	25	26.9	18.9	54.2	1.88	1.19	12	36
Mandal : Varni	Bwl	31-62	8.2	2.5	26	26.5	17.1	56.4	1.28	1.40	19	24
Dt. Nizamabad	Bw2	62-97	8.3	2.2	26	25.8	15.5	58.7	0.83	1.07	15	33
	Bss1	97-135	8.3	2.1	4.3	26.1	15.8	58.1	0.79	1.09	25	24
	Bss2	135-172	8.1	1.5	51	26.0	16.0	58.0	0.62	1.02	14	22
	Ck	172-200	8.3	0.6	102	36.5	19.1	44.4	0.31	0.62	13	14
			P3: Fine	e, smectitic, i	isohypertherm	ic Typic Ha	plustert					
Adilabad	Ap	0-24	7.8	5.6	39	32.9	6.8	60.3	0.72	1.20	38	39
Mandal : Adilabad	Bw	24-43	8.0	5.3	45	27.8	15.2	57.0	0.78	1.17	28	31
Dt . Adilabad	Bss1	43-79	8.3	4.6	102	23.5	23.8	52.7	0.40	1.28	28	33
	Bss2	79-115	8.6	3.7	97	20.4	28.0	51.6	0.68	0.84	19	29
	Bss3	115-152	8.9	2.2	115	17.7	32.6	49.7	0.42	0.72	26	24
	Bss4	152-200	9.2	1.7	115	15.3	40.0	44.7	0.52	0.48	23	22
			P4: Fine,	smectitic, isc	ohyperthermic	Chromic H	aplustert					
Mudhol	Ap	0-18	7.7	3.7	75	18.4	34.6	47.0	1.22	1.85	18	6
Mandal: Mudhol	Bwl	18-48	7.7	3.7	72	20.2	33.4	46.4	1.01	1.21	17	12
Dt. Adilabad	Bw2	48-90	7.7	2.5	76	22.5	28.0	49.5	0.83	1.36	17	14
	Bss1	90-136	7.8	2.3	75	25.4	24.5	50.1	0.78	1.13	16	24
	Bss2	136-185	7.8	1.4	76	27.7	23.8	48.5	0.60	0.90	14	14
	Bss3	185-200	7.8	0.6	73	31.1	25.3	43.6	16.0	0.42	13	22
			P5 : Fin	e, smectitic,	isohyperthern	nic Sodic Ha	plustert					
Warangal	Ap	0-14	8.1	5.3	2	19.6	19.4	61.0	1.22	1.21	48	15
Mandal : Warangal	Bw1	14-48	8.4	4.1	2	22.1	20.0	57.9	1.11	0.58	34	13
Dt. Warangal	Bw2	48-82	8.7	4.3	46	20.5	20.5	59.0	0.70	0.38	44	21
	Bss1	82-110	8.8	3.7	50	26.2	20.5	53.3	0.68	0.56	33	21
	Bss2	110-144	8.8	1.0	48	25.5	22.0	52.5	0.54	0.67	24	13
	Bss3	144-200	8.6	1.4	83	29.1	20.7	50.2	0.29	0.47	24	13
	D292	144-200	0.0	1.4	02	27. L	20.7	JU.2	0.27	0.47	24	13

Contd ...

		I	P 6: Clayey-	skeletal, smed	titic, isohyper	thermic Ver	tic Calciust	ept				
Wyra	Ap	0-21	7.6	8.8	123	37.9	19.9	42.2	0.34	0.82	13	22
Mandal : Wyra	AB	21-34	8.0	1.4	167	39.5	22.0	38.5	0.22	0.56	3	19
Dt. Khammam	BCk	34-64	8.1	0.6	243	42.4	24.1	33.5	0.33	0.26	3	12
	Crk	64-104		Weath	ered hornblend	le schist with	calcretes ·					
			, P7:Fi		isohypertheri							
Madhira	Ap	0-20	8.0	7.2	70	35.9	18.5	45.6	0.46	1.28	4	22
Mandal: Madhira	Bw1	20-64	8.0	4.1	84	31.3	20.1	48.6	0.52	1.24	4	19
Dt.Khammam	Bw2	64-105	8.0	3.7	138	28.7	19.8	51.5	0.36	1.12	4	16
	BCk	105-162	7.9	2.1	249	27.3	22.3	50.4	0.22	0.94	2	11
			P 8: Very	-fine, smectit	ic, isohyperth	ermic Typic	Haplustert					
Rajendranagar	Ap	0-20	8.1	11.4	67	4.1	23.3	72.6	0.68	1.97	39	48
Mandal: Rajendra nag	ar Bw 1	20-50	8.6	5.8	65	4.0	22.6	73.4	0.64	1.80	15	39
Dt. Ranga Reddy	Bw2	50.80	8.7	5.6	60	3.8	21.2	75.0	0.42	1.51	29	38
	Bss1	80-120	8.6	5.3	64	3.5	20.3	76.2	0.40	0.56	29	46
	Bss2	120-152	8.7	3.4	68	3.5	18.8	77.7	0.50	0.50	30	26
	Bss3	152-185	8.7	2.4	64	3.2	18.8	78.0	0.40	0.48	25 .	25
			P 9: Fin	e, smectitic, i	sohypertherm	ic Chromic I	Haplustert					
Tandur Mandal:Tandu	r Ap	0-26	7.4	9.5	2	19.0	23.7	. 57.3	0.52	1.51	4	22
Dt.Ranga Reddy	Bw1	26-60	7.6	6.4	2	20.5	24.7	54.8	0.48	1.28	3	19
	Bw2	60-97	7.8	6.4	.32	21.9	25.1	53.0	0.42	1.54	3	14
	- Bss1	97-136	7.8	7.0	34	19.8	25.7	54.5	042	2.00	5	16
	Bss2	136-170	8.0	7.6	32	22.7	26.0	51.3	0.36	1.68	4	11
	Bss3	170-200	8.1	6.8	51	21.5	25.7	52.8	0.25	1.19	3	15
			P10: Fir	ne, smectitic,	isohypertheri	nic Vertic H	aplustept					
Sangareddi	Ap	0-15	7.7	8.2	2	30.0	14.0	56.0	0.81	1.04	59	57
Mandal : Sangareddi	Bw1	15-35	8.0	4.6	2	28.2	16.1	55.7	0.72	1.08	62	43
Dt. Medak	Bw2	35-52	8.0	5.6	39	27.0	18.1	54.9	0.66	0.79	60	45
	Bw3	52-71	8.0	4.6	47	24.1	22.3	53.6	0.63	0.71	45	32
	Bw4	71-97	8.0	5.3	56	28.5	21.3	50.2	0.63	0.72	44	32
	BC	97-120	8.1	4.2	145	30.8	23.4	45.8	0.71	0.43	40	34
	Ck	120+	8.1	1.8	241	31.1	38.0	30.9	0.66	0.45	35	25

Iron

DTPA extractable Fe content in these soils varied between 2 and 62 mg kg⁻¹. Considering the critical limit of 4.5 mg kg⁻¹ for Fe (Lindsay and Norvell 1978), 11 samples, *i.e.*, 20 per cent soil samples were deficient in iron. The Fe was deficient in sub-surface layers of P6 and all the horizons of P7 and P9 due to higher pH and CaCO₃ (Yelvikar *et al.* 1996).

Manganese

DTPA extractable Mn content was found to vary between 6 and 57 mg kg⁻¹ in different horizons which are above the critical limit (3 mg kg⁻¹) suggested by Takkar *et al.* (1989). Available Mn content was significantly and positively correlated with organic carbon (r=0.39**) and clay (r=0.40**).

In general, calcium carbonate decreased the availabilities of micronutrients owing to their insoluble hydroxides at higher pH (Sahoo *et al.*1995). Contrary to it, organic carbon had positive influence on DTPA- micronutrients due to complexation (Hodgson 1963; Katyal and Sharma 1991).

Acknowledgements

First author is thankful to the ICAR, New Delhi for sponsoring for the Ph.D. studies at Acharya N.G.Ranga Agricultural University, Rajendranagar. She also expresses her sincere gratitude to Dr. M.Velayutham, former Director, NBSS and LUP, Nagpur for granting the study leave.

References

Chattopadhyay, T., Sahoo, A.K., Singh, R.S.

- and Shyampura, R.L. (1996). Availlable micronutrient status in the soils of Vindhyan scarplands of Rajasthan in relation to soil characteristics. *Journal of the Indian Society of Soil Science* 44, 678-681.
- Dhane, S.S. and Shukla, L.M. (1995). Distribution of DTPA extractable Zn, Cu, Mn and Fe in some soil series of Maharashtra and their relationship with some soil properties. *Journal of the Indian Society of Soil Science* 43, 597-600.
- Hodgson, J.F. (1963). Chemistry of the micronutrient elements in soils. Advances in Agronomy 15, 119-159.
- Jagdish Prasad and Gajbhiye, K.S. (1999).

 Vertical distribution of micronutrient cations in some Vertisol profiles occurring in different ecoregions. Journal of the India Society of Soil Science 47, 151-153.
- Katyal, J.C. (1985). Research achievements of All India Coordinated Scheme of Micronutrients in soils and plants. *Fertiliser News* **30**,67-80.
- Katyal, J.C. and Randhawa, N.S. (1983). Micronutrients. FAO Fertilizer and Plant Nutrition Bulletin No. 5, 92.
- Katyal, J.C. and Sharma, B.D. (1991). DTPA-extractable and total Zn, Cu, Mn and Fe in Indian soils and their association with some soil properties. *Geoderma* **49**,165-179.
- Lindsay, W.L. and Norvell, W.A. (1978). Development of a DTPA soil

- test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42,421-428.
- Manohar, C. (1974). Zinc fixation by some black and red soils of Andhra Pradesh. M.Sc.(Ag.) thesis, Andhra Pradesh Agricultural University, Hyderabad (unpublished).
- Sahoo, A.K., Chattopadhyay, T., Singh R.S. and Shyampura R.L. (1995). Available micronutrient status in the soils of Malwa plateau (Rajasthan). Journal of the Indian Society of Soil Science 43, 698-700.
- Sharma, Y.M. and Gupta, G.P. (2001). Distribution of total and available micronutrients in profiles of different soils of Madhya Pradesh. *Annals of Agricultural Research* 22, 125-127.
- Soltanpour, P.N., Workman, S.M. and Schwab, A.P.(1979). Use of induc-

- tively coupled plasma spectrometry for the simultaneous determination of macro and micronutrients in NH₄HCO₃-DTPA extracts of soils. Soil Science Society of America Journal 43,75-78.
- Takkar, P.N., Chhibba, I. M. and Mehta, S.K. (1989). Twenty years of coordinated research on micronutrients in soils and plants. Indian Institute of Soil Science Bulletin No. 1,76.
- Tandon, H.L.S. (1995). 'Micronutrient research and agricultural production', (Fertilizer Development and consultation Organization, New Delhi, India).
- Yelvikar, N.S., Syed Ismail, Muneera Siddiqui, Malewar, G.U. and Tajjudin (1996). Distribution of different forms of iron in vertic soils and their relation with soil properties. Journal of the Indian Society of Soil Science 44, 781-783

Received: October 2003, Accepted: April 2004