

Secondary and Micro Nutrient mapping in forest soils of Kandhamal district, Odisha

Bandita Jena*, R.K. Nayak, Jyotirmayee Das, R.K. Parida and D. Sethi

Department of Soil Science and Agricultural Chemistry, Orrisa University of Agricultural and Technology, Bhubaneswar, India

Abstract: Emergence of widespread secondary and micro nutrient deficiencies have become major constraints of productivity. Farmers give hardly any emphasis on application of these nutrients. As a result decline or stagnation in production and productivity of many crops is observed creating a huge gap between the requirement and supply of food grains. For efficient soil and crop management soil test based fertilizer application is highly essential. major nutrient analysis is often done micro nutrient analysis is usually neglected due to prohibitive costs and expensive instruments. Data on soil micro and secondary nutrients status were used for generation of soil fertility maps in GIS environment. In the present paper GPS based soil survey was conducted during 2012-13 where spatially distributed georeferenced soil samples (0-20 cm depth) were collected from forest soils of Kandhamal district, Odisha and analysed for various secondary and micronutrients along with some basic parameters like pH, EC and OC. Derived thematic maps showed deficiency of sulphur to an extent of 82.5% followed by boron and Zinc as the limiting elementing of Kandhamal soils.

Keywords: Nutrient mapping soil survey, forest soils

Introduction

Production and productivity of many crops is declining due to decline in soil fertility status, imbalanced fertilizer use, lack of knowledge on micro and secondary fertilizers etc. Efficiency of major nutrients is increased in presence of micronutrients (Mehta 1974). There exists a narrow gap between the deficiency and toxicity level. micronutrients and recommendation without soil testing can lead to anomalies. Global Positioning System (GPS) based, soil sampling can provide a basis for developing sitespecific nutrient management via soil fertility maps. In Odisha visual symptoms of deficiency / toxicity of some secondary and micronutrients on crops have been observed locations. Hence, a systematic study was conducted to generate information on extent of secondary and micronutrient deficiency or toxicity areas under different soil types and the matic maps have been genrated for different nutrients under GIS environment.

Study area

Kandhamal, a tribal dominated district occupies a central position in the Geo-Political map of Odisha. It lies between 83° 30¹E to 84° 48¹ E longitude and between 19° 34¹ N to 20° 54¹ N latitude in agro climatic zone of subregion Eastern Ghats and part of Eastern Plateau. It has a total geographical area of 8021Sq Km with an average annual rainfall of 1597 mm (62.9). The average minimum and maximum temperatures are 1° in December to 35°C respectively.

Soil Sampling

Grid sampling was done at 1x1 km distance ensuring minimum 25 samples from each administrative block. The latitude, longitude and elevation at each sampling site were recorded using a hand held GPS and 595 georeferenced surface soil samples were collected from 12 blocks of the district.

Materials and Methods

^{*}Corresponding Author Email: bjena8763@gmail.com

Bandita Jena et al.

Soil Analysis

Soil samples were air dried, processed, passed through 2 mm sieve for analysis of nutrients. pH and EC were measured in 1: 2.5 soil water ratio (w/v) suspension using pH meter and EC meter respectively. Soil OC content was estimated by Walkley and Black (1934) method, Exchangeable Ca by EDTA titration method (Page *et al.* 1982). Available sulphur was determined spectrophotometrically as described by (Chesnin and Yien (1951). The micronutrient (Mn, Fe, Zn, Cu) from soils were extracted with 0.005 Diethylene Triamine Penta Acetic acid (DTPA) as per method out lined by Lindsey and Norvell (1978). Hot water soluble boron was estimated as per the method outlined by Berger and Trough (1939). Data were subjected to descriptive analysis.

Results and Discussion

Data on basic parameters like pH, EC, OC are presented in Table 1. The pH ranged from 4.06 to 8.560 Electrical conductivity of these soils ranged from 0.004 to 0.959 dS m⁻¹. Organic carbon content of soils ranged from 0.02 to 3.9%.

Available SO_{4.5} varied from 0.38-202.96 mg kg⁻¹

with a mean value of 8.77 mg kg⁻¹ (Table 2) and was deficient in 82.5 percent sample.

In general soils are sufficient in Fe, Mn and Cu. Nearly 3.2% soils showed Cu deficiency in Khajuripada (2%) and Raikia (20%). The Fe content in soils ranged from 0.012-405.2 mg kg⁻¹ with mean value of 81.98 mg kg⁻¹. The DTPA- Cu content ranged from 0.04 to 4.16 mg kg⁻¹ with mean value of 1.048 mg kg⁻¹. The Mn content ranged from 1.2 to 400.56 mg kg⁻¹. DTPA Zn content in soils ranged from 0.017 to 32.77 mg kg⁻¹ with mean value of 1.099 mg kg⁻¹. Zn deficiency was observed in all blocks of the district. (33.45%). Hot water soluble boron status of soils ranged from 0.03 to 3.56 mg kg⁻¹, with mean value of 0.38 mg kg⁻¹, with deficiency of 79.66% percent soil samples.

It may be summarized that soils of the district are sufficient in Fe, Mn, Cu but deficient in S, B and Zn. The deficiency was in the order of S (82.5%) > B(79.7%) > Zn (33.45%) > Cu(3.2%) > Fe (0.36%). High deficiency of S and B in Kandhamal soils might be attributed to high altitude upland (Alfisols) leading to leaching of anionic nutrients.

Based on the above results digitized soil fertility map for sulphur, boron, zinc, copper, manganese and iron were prepared (Fig. 1 through 6).

Table 1. pH, EC and OC in soils of Kandhamal district

Block nam e	No. of	pН	EC	OC
	samples	(1:2.5)	$(dS m^{-1})$	(%)
Khajuripada	50	4.92-7.06	0.012-0.44	0.18-2.81
			(0.07)	(0.76)
Phulbani	75	4.53-7.5	0.013-0.233	0.1-2.71
		(5.79)	(0.06)	(0.71)
Phiringia	74	4.88-7.92	0.011-0.795	0.08-1.66
		(5.83)	(0.09)	(0.64)
Raikia	40	4.86-7.29	0.018-0.44	0.039-1.90
		(5.75)	(0.08)	(0.62)
Tikabali	21	4.71-7.43	0.028-0.476	0.16-3.90
		(5.91)	(0.09)	(0.72)
G. Udayagiri	38	4.78-6.86	0.016-0.18	0.23-1.69
		(5.88)	(0.05)	(0.84)
Nuagaon	31	4.5-7.02	0.024-0.6	0.31-1.59
		(5.83)	(0.10)	(0.63)
Baliguda	24	4.4-7.3	0.025-0.57	0.21-1.16
		(5.53)	(0.12)	(0.61)
Chakapada	32	4.72-6.79	0.015-0.303	0.18-1.21
		(5.83)	(0.085)	(0.560)
Tumudibandha	25	4.89-6.06	0.038-0.115	0.06-1.42
		(5.55)	(0.06)	(0.61)
Daringibadi	140	4.06-7.42	0.004-0.948	0.06-1.79
		(5.69)	(0.09)	(0.75)
Kotagarh	45	5.05-8.56	0.015-0.959	0.02-0.99
		(5.99)	(0.14)	(0.50)
Total	595	4.06-8.56	0.004-0.959	0.02-3.9
		(5.78)	(0.08)	(0.68)

Number within parenthesis denote mean values.

Table: 2. Micro and secondary nutrient in soils of Kandhamal.

Block name sa			Fe	Mn	Cu	Zn	В	S
	samples	I			H	mg kg ⁻¹		
		Range	31.38-226.52	5.81-112.56	0.138-1.834	0.017-22.1	0.080-1.89	0.76-16.32
Khajuripada	50	Mean	95.86	52.21	0.90	1.656	0.916	3.658
		*PSD	1	I	0.12	18.0	10.0	0.96
		Range	14.2-405.2	1.2-309.0	0.106-2.048	0.19-4.76	0.039-2.33	0.38-36.72
Phulbani	75	Mean	136.41	65.91	0.874	996.0	0.370	6.14
		*PSD	1	4.00	8.00	23.61	7.77	94.4
		Range	13.44-254.8	16.48-290.75	0.216-2.59	0.325-32.773	0.030-1.66	0.38-91.09
Phiringia	73	Mean	90.76	100.41	1.05	1.64	0.457	5.21
		*PSD	1	ı	2.7	16	16	92
		Range	8.32-179.1	23.55-228.3	0.043-2.111	0.092-3.218	0.040-3.56	0.71-196.54
Raikia	70	Mean	63.86	86.98	0.72	0.87	0.312	24.54
		*PSD	1	ı	12.8	ı		ı
		Range	27.4-209.68	7.52-105.04	0.1798-2.164	0.276-4.02	0.039-0.43	1.13-82.40
Tikabali	21	Mean	95.32	48.74	0.78	1.03	0.256	8.33
		*PSD	1	ı	19.0	28.57	100	90.48
		Range	13.2-217.6	6.9-311.15	0.054-3.049	0.158-3.698	0.040-0.927	0.38-54.44
G.Udayagiri	38	Mean	70.71	88.85	1.01	1.24	0.267	5.46
		*PSD	-	1	18.4	21	92.10	86.84
		Range	32.4-159.9	19.0-154.65	0.043-1.59	0.092-2.20	0.04-3.56	1.07-196.54
Nuagaon	31	Mean	62.00	93.06	99.0	0.77	0.399	35.49
		*PSD	•	1	25.8	41.9	77.42	32.26

Contd....

		Range	0.012-213.75	11.57-141.28	0.437-2.654	0.344-4.988	0.230-1.03	0.76-37.42
Baliguda	17	Mean	79.93	70.35	1.28	1.55	0.428	4.76
		*PSD	I	1	ı	21.74	78.3	95.65
		Range	25.4-228.35	9.08-145.1	0.288-2.736	0.39-6.48	0.040-2.250	0.38-202.96
Chakapada	32	Mean	106.08	70.935	0.994	0.966	0.244	9.44
		*PSD	I	ı	6.2	29.0	93.8	84.4
		Range	8.54-179.22	51.56-126.22	0.54-2.852	0.098-6.14	0.125-0.333	0.71-36.29
Tumudibandha	25	Mean	43.254	80.834	1.255	0.887	0.201	99.9
		*PSD	I	1	ı	09	100	80
Daringibadi	140	Range	0.95-304.0	7.12-324.6	0.042-4.159	0.078-7.53	0.039-2.435	0.71-40.25
		Mean	59.05	115.74	1.39	0.77	0.291	7.72
		PSD	1.43	1	10.7	54.28	92.14	81.43
Kotgarh	45	Range	1.36-156.64	6.44-400.56	0.132-1.642	0.021-8.48	0.039-2.428	1.42-51.24
		Mean	59.69	59.69	0.898	1.076	0.436	8.82
		PSD	I	1	4.40	40.0	80	75.55
		Range	0.012-405.2	1.2-400.56	0.042-4.159	0.017-32.773	0.030-3.56	0.38-202.96
Total	595	Mean	81.98	85.61	1.05	1.099	0.38	8.77
		*PSD	0.36	0.33	10.9	34.62	79.15	82.52

* Per cent sample deficient

84 Bandita Jena et al.

Out of 595 samples 159 samples were analyzed for exchangeable Ca⁺², the range and mean are presented in table 3. It was found that exchangeable Ca⁺² content varied

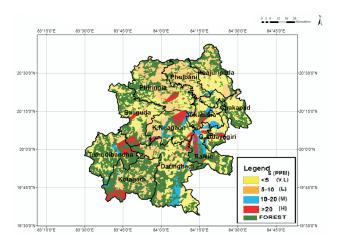
from 0.75-15.4 cmol (p $^{+}$) kg $^{-1}$ with mean value of 4.62 cmol(P $^{+}$) kg $^{-1}$ and it was above critical limit.

Table 3. Block wise Exchangeable Ca content of Kandhamal soils

	Block	Sample	Range [cmol(P +) kg-1]	Mean
1	Khajuripada	28	1.2-12.4	5.52
2	Phulbani	9	1.13-5.38	2.75
3	Phiringia	21	4.2-12.2	9.01
4	Raikia	8	3.6-7.4	5.25
5	Tikabali	10	3.8-8.6	5.86
6	G.Udayagiri	12	2.6-6.6	3.73
7	Nuagaon	10	0.75-2.63	1.44
8	Baliguda	9	3.8-6.2	5.07
9	Chakapada	11	4.40-15.40	7.33
10	Tumudibandha	8	1.20-4.40	2.30
11	Daringibadi	24	1.0-8.0	4.31
12	Kotgarh	9	0.75-6.25	2.89
		159	0.75-15.4	4.62

Multinutrient deficiency was observed at many grid points. Table 4 shows that boron and sulphur deficiency occurred together in almost 40% samples, while 23% samples showed common deficiency of zinc, boron and sulphur together.

Table 4. Extent of Multimicronutrient deficiency in Kandhamal district


Nutrient	Deficiency (%)
B+S	39.83
Zn+S	3.60
Zn+B	5.70
Zn+B+S	22.86

The interrelationship between various micronutrients and other soil properties were analyzed and presented in table 5. It indicated negative correlation of pH with soil

micronutrients *viz.* Fe, Mn, Zn and positive correlation of extractable Cu, S with OC of soil.

Table 5. Correlation coefficient of diffe	rent soil parameters with extractable	secondary and micronutrients of
Kandhamal soils	•	•

	pН	EC	OC	Fe	Mn	Cu	Zn	В	S
pН	1								
EC	0.407	1							
OC	0.155	0.499	1						
Fe	-0.473	0.005	0.050	1					
Mn	-0.183	0.041	0.283	0.415	1				
Cu	0.008	0.445	0.626	0.165	0.250	1			
Zn	-0.119	0.165	0.250	0.349	0.168	0.387	1		
В	0.017	0.173	0.031	0.152	0.099	0.026	0.181	1	
S	0.140	0.369	0.395	0.009	0.071	0.349	0.141	0.126	1

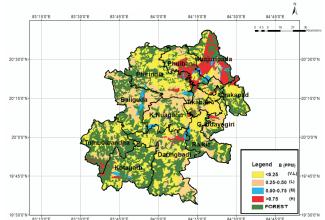
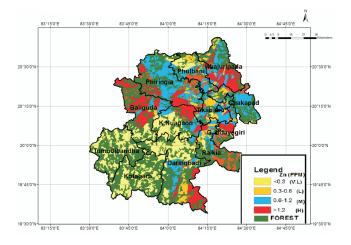



Fig.1 Digitized sulphur content map

Fig.2 Digitized Boron content map

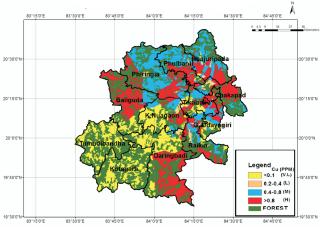


Fig. 3 Digitized zinc map

Fig.4 Digitized copper map

Bandita Jena et al.

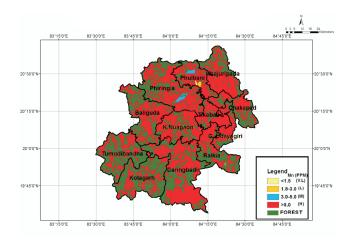


Fig.5 Digitized manganese map

Conclusion

Kandhamal soils exhibited high sulphur deficiency followed by boron and zinc. Hence crop management practices should include application of these maturites for higher crop production. Application of S @ 20-40 kg through gypsum, phosphogypsum, bentonite sulphur is recommended along with NPK fertilizers for higher production. Soil fertility maps developed can help farmers, scientists, agriculture officers, etc. in crop and soil management and serve as a reference nutrient map.

References

Berger, K. C. and Truog, E. (1939). Boron determination in soils and plants using the quinalizarin reaction. Industrial and Engineering Chemistry. *Analytical Edition* **11**, 540-545.

Chesnin L. and Yien C.H. (1951). Turbidimetric determination of available sulphate. *Soil Science Society of America Proceedings* **15**, 149-151.

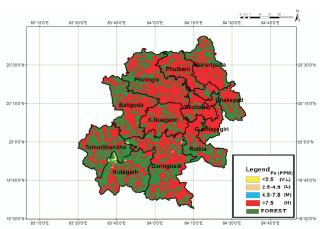


Fig.6 Digitized iron map

John, M.K., Chuah, H.H. and Neufeld, J.H. (1975).

Application of improved azomethine-H method to the determination of boron in soils and plants. *Analytical Letters* **8**, 559-568.

Lindsay, W.L. and Norvell W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. *Soil Science Society of America Journal*. **42**:421-428.

Mehta B.V. (1974). Secondary and micronutrients and nutrient interaction should be considered in balanced fertilization for higher production.

Journal of the Indian Society of Soil Science, 22, 91-102.

Page, A.l, Miller, R.H., Keeney, D.R., Baker, D.E., Roseoc Ellis, J.R. and Rhodes, J. (1982). Methods of soil analysis Part 2: chemical and Microbiological Properties, 2nd Edition Agronomy Monograph No. 9. American society of Agronamy and Soil Science Society America Madison, Wisconsin, USA.

Walkley, A. and Black, I.A. (1934). Rapid titration method of organic carbon of soils. *Soil Science*. **37**: 29-33.